Accounting for variability in soil microbial communities of temperate upland grassland ecosystems

2001 ◽  
Vol 33 (4-5) ◽  
pp. 533-551 ◽  
Author(s):  
S.J. Grayston ◽  
G.S. Griffith ◽  
J.L. Mawdsley ◽  
C.D. Campbell ◽  
R.D. Bardgett
2021 ◽  
Author(s):  
Chi Zhang ◽  
Chao Song ◽  
Donghui Wang ◽  
Wenkuan Qin ◽  
Biao Zhu ◽  
...  

Abstract Purpose: Changes in precipitation amount and land use are expected to greatly impact soil respiration (Rs) of grassland ecosystems. However, little is known about whether they can interactively impact Rs and how plant and soil microbial communities regulate the response of Rs. Methods: Here, we investigated the impacts of altered precipitation amount (–50%, ambient and +50%) and land-use regime (fencing, mowing and grazing) on Rs with a field experiment in the Inner Mongolian grassland.Results: We found that altered precipitation amount impacted Rs and its components across the 3-year study period, while land-use regime alone or its interaction with precipitation amount impacted them in certain years. In addition, changed soil microclimate, especially soil moisture, under altered precipitation amount and land-use regime can impact the components of Rs either directly or indirectly via influencing plant and soil microbial communities.Conclusions: Integrating changing precipitation amount and land-use regime within experiment can produce more accurate insights into grassland Rs, and chronically shifted plant and soil microbial communities under these changes may result in distinct long-term impacts on Rs.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 773 ◽  
pp. 145640
Author(s):  
Lili Rong ◽  
Longfei Zhao ◽  
Leicheng Zhao ◽  
Zhipeng Cheng ◽  
Yiming Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document