grassland ecosystems
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 146)

H-INDEX

59
(FIVE YEARS 7)

Author(s):  
Yude Pan ◽  
Robert B. Jackson ◽  
David Y. Hollinger ◽  
Oliver L. Phillips ◽  
Robert S. Nowak ◽  
...  

Oecologia ◽  
2022 ◽  
Author(s):  
Seton Bachle ◽  
Jesse B. Nippert

AbstractGrassland ecosystems are historically shaped by climate, fire, and grazing which are essential ecological drivers. These grassland drivers influence morphology and productivity of grasses via physiological processes, resulting in unique water and carbon-use strategies among species and populations. Leaf-level physiological responses in plants are constrained by the underlying anatomy, previously shown to reflect patterns of carbon assimilation and water-use in leaf tissues. However, the magnitude to which anatomy and physiology are impacted by grassland drivers remains unstudied. To address this knowledge gap, we sampled from three locations along a latitudinal gradient in the mesic grassland region of the central Great Plains, USA during the 2018 (drier) and 2019 (wetter) growing seasons. We measured annual biomass and forage quality at the plot level, while collecting physiological and anatomical traits at the leaf-level in cattle grazed and ungrazed locations at each site. Effects of ambient drought conditions superseded local grazing treatments and reduced carbon assimilation and total productivity in A. gerardii. Leaf-level anatomical traits, particularly those associated with water-use, varied within and across locations and between years. Specifically, xylem area increased when water was more available (2019), while xylem resistance to cavitation was observed to increase in the drier growing season (2018). Our results highlight the importance of multi-year studies in natural systems and how trait plasticity can serve as vital tool and offer insight to understanding future grassland responses from climate change as climate played a stronger role than grazing in shaping leaf physiology and anatomy.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Huimin Zou ◽  
Jiquan Chen ◽  
Changliang Shao ◽  
Gang Dong ◽  
Meihui Duan ◽  
...  

Selecting an appropriate model for simulating ecosystem respiration is critical in modeling the carbon cycle of terrestrial ecosystems due to their magnitude and high variations in time and space. There is no consensus on the ideal model for estimating ecosystem respiration in different ecosystems. We evaluated the performances of six respiration models, including Arrhenius, logistic, Gamma, Martin, Concilio, and time series model, against measured ecosystem respiration during 2014–2018 in four grassland ecosystems on the Mongolian Plateau: shrubland, dry steppe, temperate steppe, and meadow ecosystems. Ecosystem respiration increased exponentially with soil temperature within an apparent threshold of ~19.62 °C at shrubland, ~16.05 °C at dry steppe, ~16.92 °C at temperate steppe, and ~15.03 °C at meadow. The six models explained approximately 50–80% of the variabilities of ecosystem respiration during the study period. Both soil temperature and soil moisture played considerable roles in simulating ecosystem respiration with R square, ranging from 0.5 to 0.8. The Martin model performed better than the other models, with a relatively high R square, i.e., R2 = 0.68 at shrubland, R2 = 0.57 at dry steppe, R2 = 0.74 at temperate steppe, and R2 = 0.81 at meadow. These models achieved good performance for around 50–80% of the simulations. No single model performs best for all four grassland types, while each model appears suitable for at least one type of ecosystem. Models that oil moisture include models, especially the Martin model, are more suitable for the accurate prediction of ecosystem respiration than Ts-only models for the four grassland ecosystems.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wen-Da Huang ◽  
Yuan-Zheng He ◽  
Huai-Hai Wang ◽  
Yuan-Zhong Zhu

The decreasing precipitation with global climate warming is the main climatic condition in some sandy grassland ecosystems. The understanding of physiological responses of psammophytes in relation to warming and precipitation is a possible way to estimate the response of plant community stability to climate change. We selected Lespedeza davurica, Artemisia scoparia, and Cleistogenes squarrosa in sandy grassland to examine the effect of a combination of climate warming and decreasing precipitation on relative water content (RWC), chlorophyll, proline, and antioxidant enzyme activities. We found that all experimental treatments have influenced RWC, chlorophyll, proline, and antioxidant enzyme activities of three psammophytes. L. davurica has the highest leaf RWC among the three psammophytes. With the intensification of precipitation reduction, the decreasing amplitude of chlorophyll from three psammophytes was L. davurica > C. squarrosa > A. scoparia. At the natural temperature, the malondialdehyde (MDA) content of the three psammophytes under severe drought treatment was much higher than other treatments, and their increasing degree was as follows: A. scoparia > C. squarrosa > L. davurica. At the same precipitation gradient, the proline of three psammophytes under warming was higher than the natural temperature. The differences in superoxide dismutase (SOD) among the three psammophytes were A. scoparia > L. davurica > C. squarrosa. Moreover, at natural temperature, more than 40% of precipitation reduction was most significant. Regardless of warming or not, the catalase (CAT) activity of A. scoparia under reduced precipitation treatments was higher than natural temperature, while the response of L. davurica was opposite. Correlation analyses evidenced that warming (T) was significant in L. davurica and precipitation (W) was significant in A. scoparia and C. squarrosa according to the Monte-Carlo permutation test (p = 0.002, 0.004, and 0.004). The study is important in predicting how local plants will respond to future climate change and assessing the possible effects of climate change on sandy grassland ecosystems.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Larisa Corcoz ◽  
Florin Păcurar ◽  
Victoria Pop-Moldovan ◽  
Ioana Vaida ◽  
Vlad Stoian ◽  
...  

Grassland ecosystems occupy significant areas worldwide and represent a reservoir for biodiversity. These areas are characterized by oligotrophic conditions that stimulate mycorrhizal symbiotic partnerships to meet nutritional requirements. In this study, we selected Festuca rubra for its dominance in the studied mountain grassland, based on the fact that grasses more easily accept a symbiotic partner. Quantification of the entire symbiosis process, both the degree of colonization and the presence of a fungal structure, was performed using the root mycorrhizal pattern method. Analysis of data normality indicated colonization frequency as the best parameter for assessing the entire mycorrhizal mechanism, with five equal levels, each of 20%. Most of the root samples showed an intensity of colonization between 0 and 20% and a maximum of arbuscules of about 5%. The colonization degree had an average value of 35%, which indicated a medium permissiveness of roots for mycorrhizal partners. Based on frequency regression models, the intensity of colonization presented high fluctuations at 50% frequency, while the arbuscule development potential was set to a maximum of 5% in mycorrhized areas. Arbuscules were limited due to the unbalanced and unequal root development and their colonizing hyphal networks. The general regression model indicated that only 20% of intra-radicular hyphae have the potential to form arbuscules. The colonization patterns of dominant species in mountain grasslands represent a necessary step for improved understanding of the symbiont strategies that sustain the stability and persistence of these species.


2021 ◽  
Vol 14 (1) ◽  
pp. 80
Author(s):  
Ruijing Wang ◽  
Qisheng Feng ◽  
Zheren Jin ◽  
Tiangang Liang

While the alpine grassland ecosystems on the Tibetan Plateau (TP) have generally improved in recent years, some grasslands still suffer from varying degrees of degradation. Studying the restoration potential (R) of the grasslands on the TP is crucial to the conservation and restoration of its alpine grassland ecosystems. Few studies have assessed the restoration value of the alpine grasslands on the TP. We attempt to estimate the actual (ANPP) and potential net primary productivity (PNPP) of the grasslands on the TP. On this basis, we defined R as the “gap” between the current and highest achievable levels of restoration of a grassland. Then, R estimates were yielded for the alpine grasslands on the TP, which we used to analyze the restoration value of these grasslands. Specifically, based on the meteorological data for the period 2001–2019, in conjunction with remote-sensing imagery acquired by a moderate-resolution imaging spectroradiometer for the same period, the Carnegie–Ames–Stanford approach model was selected to produce ANPP estimates for the grasslands on the TP. Then, the Thornthwaite memorial model, the principle of similar habitats, and the Chikugo model, were employed to generate PNPP estimates for these grasslands. In addition, the R of these grasslands was then assessed based on the difference between their PNPP and ANPP. The main results are summarized as follows. (1) A multiyear mean R of 332.33 g C·m–2 (81.59% of the ANPP) was determined for the grasslands on the TP over the period 2001–2019. A notable spatial distribution pattern of high Rs in the southwestern, eastern and middle parts of the TP, and low Rs in the northwestern part of the TP were also identified. Most of the grasslands in areas such as the southern part of Nagqu, the southwestern part of Ngari, Xigaze, Garze Tibetan Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Gannan Tibetan Autonomous Prefecture, Huangnan Tibetan Autonomous Prefecture, Haibei Tibetan Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and Yushu Tibetan Autonomous Prefecture were found to have high restoration value. (2) Grasslands with a stable R account were the highest proportion (76.13%) of all the grasslands on the TP, followed by those with a decreasing R (19.62%) and those with an increasing R (4.24%). Grasslands with an increasing R were mainly concentrated in the southern part of Xigaze, and parts of Yushu Tibetan Autonomous Prefecture, Guoluo Tibetan Autonomous Prefecture and Garze Tibetan Autonomous Prefecture. (3) Analysis based on the local conditions of the TP revealed a high restoration value for three types of grassland (i.e., alpine meadows, mountain meadows, and temperate meadow steppes), the grasslands distributed at altitudes of 3000–4000 m, and the grasslands located in the warm temperate zone. The results of this study are expected to provide scientific and theoretical support for the formulation of policies and measures aimed at conserving grasslands, as well as restoring ecosystems and degraded grasslands on the TP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenlong Li ◽  
Chenli Liu ◽  
Wenying Wang ◽  
Huakun Zhou ◽  
Yating Xue ◽  
...  

Grazing is one of the main human disturbance factors in alpine grassland on the Qinghai-Tibet Plateau (QTP), which can directly or indirectly influence the community structures and ecological functions of grassland ecosystems. However, despite extensive field grazing experiments, there is currently no consensus on how different grazing management approaches affect alpine grassland diversity, soil carbon (C), and nitrogen (N). Here, we conducted a meta-analysis of 70 peer-reviewed publications to evaluate the general response of 11 variables related to alpine grassland ecosystems plant diversity and ecological functions to grazing. Overall, the results showed that grazing significantly increased the species richness, Shannon–Wiener index, and Pielou evenness index values by 9.89% (95% CI: 2.75–17.09%), 7.28% (95% CI: 1.68–13.62%), and 3.74% (95% CI: 1.40–6.52%), respectively. Aboveground biomass (AGB) and belowground biomass (BGB) decreased, respectively, by 41.91% (95% CI: −50.91 to −32.88%) and 17.68% (95% CI: −26.94 to −8.52%). Soil organic carbon (SOC), soil total nitrogen (TN), soil C:N ratio, and soil moisture decreased by 13.06% (95% CI: −15.88 to −10.15%), 12.62% (95% CI: −13.35 to −8.61%), 3.27% (95% CI: −4.25 to −2.09%), and 20.75% (95% CI: −27.89 to −13.61%), respectively, whereas, soil bulk density and soil pH increased by 17.46% (95% CI: 11.88–24.53%) and 2.24% (95% CI: 1.01–3.64%), respectively. Specifically, moderate grazing, long-durations (>5 years), and winter grazing contributed to increases in the species richness, Shannon–Wiener index, and Pielou evenness index. However, AGB, BGB, SOC, TN, and soil C:N ratios showed a decrease with enhanced grazing intensity. The response ratio of SOC was positively associated with AGB and BGB but was negatively related to the Shannon–Wiener index and Pielou evenness index. Furthermore, the effects of grazing on plant diversity, AGB, BGB, SOC, and TN in alpine grassland varied with grazing duration, grazing season, livestock type, and grassland type. The findings suggest that grazing should synthesize other appropriate grazing patterns, such as seasonal and rotation grazing, and, furthermore, additional research on grazing management of alpine grassland on the QTP is needed in the future.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hong Pan ◽  
Haojie Feng ◽  
Yaowei Liu ◽  
Chun-Yu Lai ◽  
Yuping Zhuge ◽  
...  

AbstractGrassland soils serve as a biological sink and source of the potent greenhouse gases (GHG) methane (CH4) and nitrous oxide (N2O). The underlying mechanisms responsible for those GHG emissions, specifically, the relationships between methane- and ammonia-oxidizing microorganisms in grazed grassland soils are still poorly understood. Here, we characterized the effects of grazing on in situ GHG emissions and elucidated the putative relations between the active microbes involving in methane oxidation and nitrification activity in grassland soils. Grazing significantly decreases CH4 emissions while it increases N2O emissions basing on 14-month in situ measurement. DNA-based stable isotope probing (SIP) incubation experiment shows that grazing decreases both methane oxidation and nitrification processes and decreases the diversity of active methanotrophs and nitrifiers, and subsequently weakens the putative competition between active methanotrophs and nitrifiers in grassland soils. These results constitute a major advance in our understanding of putative relationships between methane- and ammonia-oxidizing microorganisms and subsequent effects on nitrification and methane oxidation, which contribute to a better prediction and modeling of future balance of GHG emissions and active microbial communities in grazed grassland ecosystems.


Author(s):  
Junwei Peng ◽  
Hong Liu ◽  
Yang Hu ◽  
Yang Sun ◽  
Qin Liu ◽  
...  

Numerous studies have investigated bacterial community structure in grassland ecosystems and bacterial community responses to human management at various spatial and temporal scales; however, research on soil bacterial community assembly dynamics in the course of grassland degradation is limited. Here, the authors investigate the response and assembly processes of bacterial communities adopted in two grasslands with different degrees of degradation. Stochastic processes dominated bacterial community assembly processes in response to grassland degradation, with the bacterial diversity decreasing; however, functional gene diversity increased. Furthermore, different phyla exhibited distinct response strategies: Proteobacteria and Bacteroidetes, as r-strategists, exhibited positive responses, with increases in diversity, abundance, and niche width with an increase in grassland degradation, enhancing biodiversity and productivity; other phyla (mainly Acidobacteria) exhibited greater phylogenetic dispersion and functional redundancy, and less niche overlap, highlighting the role of K-strategy in improving community resource-use efficiency in response to resource loss in degraded grasslands. The transition from K- to r- strategy in bacterial communities following grassland degradation could help communities adapt to environmental disturbance in the form of nutrient loss. The results of the present study enhance our understanding of how nutrient loss in natural grassland ecosystems leads to shifts in bacterial community composition and assembly processes mediated by different response strategies of different phyla.


2021 ◽  
Author(s):  
Chi Zhang ◽  
Chao Song ◽  
Donghui Wang ◽  
Wenkuan Qin ◽  
Biao Zhu ◽  
...  

Abstract Purpose: Changes in precipitation amount and land use are expected to greatly impact soil respiration (Rs) of grassland ecosystems. However, little is known about whether they can interactively impact Rs and how plant and soil microbial communities regulate the response of Rs. Methods: Here, we investigated the impacts of altered precipitation amount (–50%, ambient and +50%) and land-use regime (fencing, mowing and grazing) on Rs with a field experiment in the Inner Mongolian grassland.Results: We found that altered precipitation amount impacted Rs and its components across the 3-year study period, while land-use regime alone or its interaction with precipitation amount impacted them in certain years. In addition, changed soil microclimate, especially soil moisture, under altered precipitation amount and land-use regime can impact the components of Rs either directly or indirectly via influencing plant and soil microbial communities.Conclusions: Integrating changing precipitation amount and land-use regime within experiment can produce more accurate insights into grassland Rs, and chronically shifted plant and soil microbial communities under these changes may result in distinct long-term impacts on Rs.


Sign in / Sign up

Export Citation Format

Share Document