06/00886 Large-scale integration of wind power into different energy systems

2006 ◽  
Vol 47 (2) ◽  
pp. 130
2014 ◽  
Vol 521 ◽  
pp. 151-156
Author(s):  
Sheng Wei Tang ◽  
Yi Tan ◽  
Juan Liu ◽  
Jian Wei Sun

The fluctuation is an important factor that limits large-scale integration of wind power into power grid. In order to improve penetration level of wind power, the EVs based on V2G are considered to participate in regulating wind power while considering charge-discharge characteristics of EV battery. Thus, in this paper, an optimized EV charge-discharge control model is proposed to reduce output fluctuation of wind power. The Monte-Carlo method is used to simulate the stochastic wind speed based on Weibull probability density function. Finally, Genetic Algorithm (GA) is adopted to solve the problem. Results indicate that the EVs based on V2G can reduce the wind power fluctuation level to some extent, absorbing the wind power surplus and compensating the of wind power shortage.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1710 ◽  
Author(s):  
Abdul Basit ◽  
Tanvir Ahmad ◽  
Asfand Yar Ali ◽  
Kaleem Ullah ◽  
Gussan Mufti ◽  
...  

Increasing large-scale integration of renewables in conventional power system has led to an increase in reserve power requirement owing to the forecasting error. Innovative operating strategies are required for maintaining balance between load and generation in real time, while keeping the reserve power requirement at its minimum. This research work proposes a control strategy for active power balance control without compromising power system security, emphasizing the integration of wind power and flexible load in automatic generation control. Simulations were performed in DIgSILENT for forecasting the modern Danish power system with bulk wind power integration. A high wind day of year 2020 was selected for analysis when wind power plants were contributing 76.7% of the total electricity production. Conventional power plants and power exchange with interconnected power systems utilize an hour-ahead power regulation schedule, while real-time series are used for wind power plants and load demand. Analysis showed that flexible load units along with wind power plants can actively help in reducing real-time power imbalances introduced due to large-scale integration of wind power, thus increasing power system reliability without enhancing the reserve power requirement from conventional power plants.


Sign in / Sign up

Export Citation Format

Share Document