power fluctuation
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 163)

H-INDEX

20
(FIVE YEARS 7)

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhengxun Guo ◽  
Bo Yang ◽  
Yiming Han ◽  
Tingyi He ◽  
Peng He ◽  
...  

Phase-locked loop (PLL) is a fundamental and crucial component of a photovoltaic (PV) connected inverter, which plays a significant role in high-quality grid connection by fast and precise phase detection and lock. Several novel critical structure improvements and proportional-integral (PI) parameter optimization techniques of PLL were proposed to reduce shock current and promote the quality of grid connection at present. However, the present techniques ignored the differential element of PLL and did not acquire ideal results. Thus, this paper adopts Aquila optimizer algorithm to regulate the proportional-integral-differential (PID) parameters of PLL for smoothing power fluctuation and improving grid connection quality. Three regulation strategies (i.e., PLL regulation, global regulation, and step regulation) are carefully designed to systematically and comprehensively evaluate the performance of the proposed method based on a simulation model in MATLAB/Simulink, namely, “250-kW Grid-Connected PV Array”. Simulation results indicate that PLL regulation strategy can effectively decrease power fluctuation and overshoot with a short response time, low complexity, and time cost. Particularly, the Error(P) and the maximum deviation of output power under optimal parameters obtained by PLL strategy are decreased by 418 W and 12.5 kW compared with those under initial parameters, respectively.


Author(s):  
Ke Shi ◽  
Chunsen Tang ◽  
Zhihui Wang ◽  
Xiaofei Li ◽  
Yuanzhao Zhou ◽  
...  

2022 ◽  
Vol 355 ◽  
pp. 03065
Author(s):  
Zhongxiao Chen ◽  
Jiarui Chen ◽  
Kaiqing Fu ◽  
Longkun Xue

In order to solve the large-scale grid-connected photovoltaic cells caused by power fluctuations, power quality decline and other issues. This paper proposes and researches a power coordination control strategy for microgrid based on photovoltaic power generation. The principle of photovoltaic cells and the switching of maximum power point tracking and limited power mode are studied. The stability control methods of DC bus voltage, AC bus wire and frequency are studied. The model of microgrid is established and moreover, based on the power of microgrid and the charging state of storage battery, the operation of microgrid is divided into different working modes. The stable operation of microgrid is realized by adjusting the output power of each unit in different working modes. The calculation shows that the control strategy can effectively reduce the power fluctuation in the microgrid and improve the output power of renewable energy. Finally, the feasibility and effectiveness of the proposed methods are verified by experiments.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lihua Dai ◽  
Ben Wang ◽  
Xuemin Cheng ◽  
Qin Wang ◽  
Junchang Yu

Abstract In order to discuss the application and mode of the forced modulation function in a sensor, the optical fibre emphasis function was established by referring to the geometric method, the tilt factor and the shape factor of the reflecting surface. These were introduced for the first time, and the corresponding mathematical model was established. The method of numerical simulation is systematically studied and multimode optical fibre parameters (including optical fibre of axial spacing, optical fibre core diameter and numerical aperture) are adopted. The reflective surface inclination and shape factors on the RIM–FOS intensity modulation characteristics are studied according to the obtained light quasi-Gaussian distribution model, establishing a general three-intensity modulation function of fibre optic sensor. The results show that the intensity modulation characteristic of specular reflection is obviously better than that of the diffuse reflection surface, and the peak value of the modulation function is five times that of diffuse reflection. The intensity modulation characteristic decreases with increase in the roughness of the reflection surface. The system can not only complete the RIM–FOS characteristic simulation and characteristic testing functions, but can also start-up the test and not be affected by the ambient light interference and power fluctuation of the light source. The test stability is good with high repeatability.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8312
Author(s):  
Weiyue Huo ◽  
Jihong Zhu ◽  
Jing Zhou

Due to the intermittence and randomness of the renewable energy, hybrid energy storage system is widely adopted to suppress the power fluctuation. Power distribution is crucial for the robust and efficient operation of hybrid energy system. This paper proposes an innovative framework for hybrid energy storage system power distribution combining main circuit topology, modulation method and power distribution strategy. Firstly, hybrid modulation strategy to realize power distribution in a single-phase inverter is introduced. Then, power load prediction and low frequency filter are utilized to generate references for power distribution. Finally, the simulation model is established to test the framework and the result demonstrates the superiority of the proposed framework. The mean absolute percent error of the proposed SSA-LSTM mdoel is 0.0955 and the prediciton error by 40% compared with conventional LSTM model. Additionally, the energy management framework can adjust the port power distribution ratio flexibily to significantly suppress the power fluctuation of the grid and the operation cost of the hybrid energy storage system by reducing the charge and discharge cycle of the battery.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuchen Hao ◽  
Dawei Su ◽  
Zhen Lei

With the increased penetration of the photovoltaic (PV) energy, the power system stability problem becomes an issue, as the output power of PV plants has unpredictable fluctuations. To maintain the power stability of the PV plants, battery energy storages (BESs) play an important role due to their fast and accurate response speed. However, it is challenging that the BES with multiple sub-modules responds well to the PV power fluctuations resulting from the various influence factors, such as defects, faults, and partial shading. Therefore, a bi-level control strategy is proposed in this paper, aiming at minimizing the operation cost of BES in maintaining power stability. The control strategy consists of the PV power fluctuations identification block and the mitigation block. In specific, the identification block can output the power fluctuation of a PV system by the PV power fluctuation identification technique. The technique is developed based on the characteristics of PV-string current under electrical faults and partial shading conditions. Meanwhile, the mitigation block can manage the multiple battery sub-modules with different regulation characteristics to meet the power fluctuations. At last, the promising results are obtained by MATLAB\Simulink with the coordinated operation of those two blocks, including the precise condition of the PV system and the optimal power output of each battery sub-module. Therefore, a comprehensive bi-level control strategy is developed to regulate the operation of battery sub-modules for PV-BES systems.


Sign in / Sign up

Export Citation Format

Share Document