06/01034 The role of policy instruments for promoting combined heat and power production with low CO2 emissions in district heating systems

2006 ◽  
Vol 47 (2) ◽  
pp. 149
2019 ◽  
Vol 11 (4) ◽  
pp. 1137-1156 ◽  
Author(s):  
Ignacio Blanco ◽  
Anders N. Andersen ◽  
Daniela Guericke ◽  
Henrik Madsen

2020 ◽  
Vol 27 ◽  
pp. 100446 ◽  
Author(s):  
Ida Græsted Jensen ◽  
Frauke Wiese ◽  
Rasmus Bramstoft ◽  
Marie Münster

2021 ◽  
pp. 219-234
Author(s):  
Maciej Raczyński ◽  
Artur Wyrwa ◽  
Marcin Pluta ◽  
Wojciech Suwała

AbstractThis chapter examines the role of centralized district heating (DH) systems in context of energy system flexibility and decarbonization. The analysis is performed by applying the model TIMES-Heat-EU. Capacity expansion and operation of the district heating generation units is mainly driven by the evolution of the district heating demand, which varies between the REFLEX scenarios. In all scenarios fuel and technology switches toward bioenergy and natural gas leading to CO2 emission reduction. Since the total amount of energy produced (both heat and electricity) is the highest in the High-RES centralized scenario, the corresponding CO2 emissions for district heating are the highest as well. The CO2 emissions can be reduced by ⁓60% in 2050 compared to 2015. Furthermore, the role of thermal energy storage and power-to-heat technologies is examined.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Matthäus Irl ◽  
Jerry Lambert ◽  
Christoph Wieland ◽  
Hartmut Spliethoff

Abstract A short-term operational planning tool for geothermal plants with heat and power production connected to large district heating systems is developed. The software tool contains, among other features, a heat demand forecasting model for district heating systems. Two options, such as linear regression and artificial neural networks, are compared. As the result shows, artificial neural networks with the Bayesian Regularization Backpropagation Algorithm have a high generalization capability and are suitable to forecast the heat demand of large district heating systems with high accuracy. Data from a district heating system with about 70-MW load supplied by a geothermal plant in the south of Munich (Germany) are used for comparison and assessment of all methods. After developing a suitable heat forecast, the heat and power production site is modeled by using mixed-integer linear programming. Mixed-integer linear programming has proven to be a suitable method to model the operation of geothermal plants with heat and power production as well as to solve the planning optimization problem. As the results show, the short-term operational planning tool can optimize the operation of single components as well as of the overall geothermal plant with regard to various objective functions. The tool maximizes the revenues from the sold heat and electricity minus the costs for the boiler fuel and the heat purchased from a connected adjacent geothermal plant. A retro perspective operation investigation has proven that the profitability of the considered geothermal plant could be significantly increased by using the developed software.


Sign in / Sign up

Export Citation Format

Share Document