scholarly journals On phase semantics and denotational semantics in multiplicative–additive linear logic

2000 ◽  
Vol 102 (3) ◽  
pp. 247-282 ◽  
Author(s):  
Antonio Bucciarelli ◽  
Thomas Ehrhard
2001 ◽  
Vol 109 (3) ◽  
pp. 205-241 ◽  
Author(s):  
Antonio Bucciarelli ◽  
Thomas Ehrhard

2003 ◽  
Vol 294 (3) ◽  
pp. 525-549 ◽  
Author(s):  
Max I Kanovich ◽  
Mitsuhiro Okada ◽  
Andre Scedrov
Keyword(s):  

1997 ◽  
Vol 6 ◽  
pp. 221-234 ◽  
Author(s):  
Max I. Kanovich ◽  
Mitsuhiro Okada ◽  
Andre Scedrov
Keyword(s):  

1990 ◽  
Vol 55 (1) ◽  
pp. 41-64 ◽  
Author(s):  
David N. Yetter

It is the purpose of this paper to make explicit the connection between J.-Y. Girard's “linear logic” [4], and certain models for the logic of quantum mechanics, namely Mulvey's “quantales” [9]. This will be done not only in the case of commutative linear logic, but also in the case of a version of noncommutative linear logic suggested, but not fully formalized, by Girard in lectures given at McGill University in the fall of 1987 [5], and which for reasons which will become clear later we call “cyclic linear logic”.For many of our results on quantales, we rely on the work of Niefield and Rosenthal [10].The reader should note that by “the logic of quantum mechanics” we do not mean the lattice theoretic “quantum logics” of Birkhoff and von Neumann [1], but rather a logic involving an associative (in general noncommutative) operation “and then”. Logical validity is intended to embody empirical verification (whether a physical experiment, or running a program), and the validity of A & B (in Mulvey's notation) is to be regarded as “we have verified A, and then we have verified B”. (See M. D. Srinivas [11] for another exposition of this idea.)This of course is precisely the view of the “multiplicative conjunction”, ⊗, in the phase semantics for Girard's linear logic [4], [5]. Indeed the quantale semantics for linear logic may be regarded as an element-free version of the phase semantics.


2007 ◽  
Vol 17 (2) ◽  
pp. 341-359 ◽  
Author(s):  
MICHELE PAGANI

We study full completeness and syntactical separability of MLL proof nets with the mix rule. The general method we use consists of first addressing these two questions in the less restrictive framework of proof structures, and then adapting the results to proof nets.At the level of proof structures, we find a semantical characterisation of their interpretations in relational semantics, and define an observational equivalence that is proved to be the equivalence induced by cut elimination. Hence, we obtain a semantical characterisation (in coherent spaces) and an observational equivalence for the proof nets with the mix rule.


2004 ◽  
Vol 69 (2) ◽  
pp. 340-370 ◽  
Author(s):  
Thomas Ehrhard

Abstract.In a previous work with Antonio Bucciarelli, we introduced indexed linear logic as a tool for studying and enlarging the denotational semantics of linear logic. In particular, we showed how to define new denotational models of linear logic using symmetric product phase models (truth-value models) of indexed linear logic. We present here a strict extension of indexed linear logic for which symmetric product phase spaces provide a complete semantics. We study the connection between this new system and indexed linear logic.


2003 ◽  
Vol 10 (43) ◽  
Author(s):  
Mikkel Nygaard ◽  
Glynn Winskel

A simple domain theory for concurrency is presented. Based on a categorical model of linear logic and associated comonads, it highlights the role of linearity in concurrent computation. Two choices of comonad yield two expressive metalanguages for higher-order processes, both arising from canonical constructions in the model. Their denotational semantics are fully abstract with respect to contextual equivalence. One language derives from an exponential of linear logic; it supports a straightforward operational semantics with simple proofs of soundness and adequacy. The other choice of comonad yields a model of affine-linear logic, and a process language with a tensor operation to be understood as a parallel composition of independent processes. The domain theory can be generalised to presheaf models, providing a more refined treatment of nondeterministic branching. The article concludes with a discussion of a broader programme of research, towards a fully fledged domain theory for concurrency.


2000 ◽  
Vol 10 (2) ◽  
pp. 277-312 ◽  
Author(s):  
PAUL RUET

Non-commutative logic, which is a unification of commutative linear logic and cyclic linear logic, is extended to all linear connectives: additives, exponentials and constants. We give two equivalent versions of the sequent calculus (directly with the structure of order varieties, and with their presentations as partial orders), phase semantics and a cut-elimination theorem. This involves, in particular, the study of the entropy relation between partial orders, and the introduction of a special class of order varieties: the series–parallel order varieties.


2007 ◽  
Vol 17 (3) ◽  
pp. 527-562 ◽  
Author(s):  
DAMIANO MAZZA

The symmetric interaction combinators are a variant of Lafont's interaction combinators. They enjoy a weaker universality property with respect to interaction nets, but are equally expressive. They are a model of deterministic distributed computation and share the good properties of Turing machines (elementary reductions) and of the λ-calculus (higher-order functions and parallel execution). We introduce a denotational semantics for this system, which is inspired by the relational semantics for linear logic, and prove an injectivity and full completeness result for it. We also consider the algebraic semantics defined by Lafont, and prove that the two are strongly related.


Sign in / Sign up

Export Citation Format

Share Document