phase models
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 42)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Peter Bollada ◽  
Peter K Jimack ◽  
Andrew M Mullis

We summarise contributions made to the computational phase-field modelling of alloy solidification from the University of Leeds spoke of the LiME project. We begin with a general introduction to phase-field, and then reference the numerical issues that arise from solution of the model, before detailing each contribution to the modelling itself. These latter contributions range from controlling and developing interface-width independent modelling; controlling morphology in both single and multiphase settings; generalising from single to multi-phase models; and creating a thermodynamic consistent framework for modelling entropy flow and thereby postulate a temperature field consistent with the concepts of, and applicable in, multiphase and density-dependent settings.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Jafari ◽  
Mohammad Goharkhah ◽  
Alireza Mahdavi Nejad

Purpose This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field. The findings of current study are compared with previous single-phase numerical results and experimental data. Accordingly, the effect of various parameters including nanoparticles concentration, Reynolds number and magnetic field strength on the performance of the single and two-phase models are evaluated. Design/methodology/approach A two-phase mixture numerical study is carried out to investigate the influence of four U-shaped electromagnets on the hydrodynamic and thermal characteristics of Fe3O4/Water ferrofluid flowing inside a heated channel. Findings It is observed that the applied external magnetic field signifies the convective heat transfer from the channel surface, despite local reduction at a few locations. The maximum heat transfer enhancement is predicted as 23% and 25% using single and two-phase models, respectively. The difference between the results of the two models is mainly attributed to the slip velocity effect which is accounted for in the two-phase model. The magnetic field gradient leads to a significant increase in the slip velocity which in turn causes a slight difference in velocity and temperature profiles obtained by the single and two-phase models in the magnetic field region. According to percentage error calculation, the two-phase method is generally more accurate than the single-phase method. However, the percentage error of both models improves by decreasing either magnetic field intensity or Reynolds number. Originality/value For the first time in the literature, to the best of the authors’ knowledge, the current work analyzes the accuracy of the single and two phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field.


Author(s):  
Soroush Dabiri ◽  
Johannes Sappl ◽  
Prashant Kumar ◽  
Michael Meister ◽  
Wolfgang Rauch

AbstractSludge recirculation mixing in anaerobic digesters is essential for the stable operation of the digestion process. While often neglected, the configuration of the sludge inlet has a substantial influence on the efficiency of the mixing process. The fluid is either injected directly into the enclosed fluid domain or splashes onto the free surface of the slurry flow. In this paper, the aim was to investigate the effect of the inlet configuration by means of computational fluid dynamics—using ANSYS Fluent. Single-phase and multi-phase models are applied for a submerged and splashing inlet, respectively. To reduce the high computational demand, we also develop surrogate single-phase models for the splashing inlet. The digester mixing is analyzed by comparing velocity contours, velocity profiles, mixing time and dead volume. The non-Newtonian characteristics of the sludge is considered, and a $$k-\varepsilon $$ k - ε model is employed for obtaining turbulence closure. Our method is validated by means of a previous study on the same geometry. Applying a submerged inlet configuration, the resulting dead volume in the tank is estimated around 80 times lower than for the case of a splashing inlet. Additionally, by emulating the multi-phase model for splashing inlet configurations with a single-phase one, the simulation clock time reduced to 15%.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuntai Cao ◽  
Guojin Zhang ◽  
Jing Zhang ◽  
Yingjie Yang ◽  
Jialiang Ren ◽  
...  

BackgroundThis study aimed to develop and validate a computed tomography (CT)-based radiomics model to predict microsatellite instability (MSI) status in colorectal cancer patients and to identify the radiomics signature with the most robust and high performance from one of the three phases of triphasic enhanced CT.MethodsIn total, 502 colorectal cancer patients with preoperative contrast-enhanced CT images and available MSI status (441 in the training cohort and 61 in the external validation cohort) were enrolled from two centers in our retrospective study. Radiomics features of the entire primary tumor were extracted from arterial-, delayed-, and venous-phase CT images. The least absolute shrinkage and selection operator method was used to retain the features closely associated with MSI status. Radiomics, clinical, and combined Clinical Radiomics models were built to predict MSI status. Model performance was evaluated by receiver operating characteristic curve analysis.ResultsThirty-two radiomics features showed significant correlation with MSI status. Delayed-phase models showed superior predictive performance compared to arterial- or venous-phase models. Additionally, age, location, and carcinoembryonic antigen were considered useful predictors of MSI status. The Clinical Radiomics nomogram that incorporated both clinical risk factors and radiomics parameters showed excellent performance, with an AUC, accuracy, and sensitivity of 0.898, 0.837, and 0.821 in the training cohort and 0.964, 0.918, and 1.000 in the validation cohort, respectively.ConclusionsThe proposed CT-based radiomics signature has excellent performance in predicting MSI status and could potentially guide individualized therapy.


Sign in / Sign up

Export Citation Format

Share Document