Identification of p34cdc2 kinase from sea urchin Hemicentrotus pulcherrimus and its involvement in the phosphorylation of myosin II regulatory light chain in the metaphase extract

Gene ◽  
1997 ◽  
Vol 198 (1-2) ◽  
pp. 359-365 ◽  
Author(s):  
Satoshi Komatsu ◽  
Maki Murata-Hori ◽  
Go Totsukawa ◽  
Norio Murai ◽  
Hirotaka Fujimoto ◽  
...  
1996 ◽  
Vol 21 (6) ◽  
pp. 475-482 ◽  
Author(s):  
Go Totsukawa ◽  
Eiko Himi-Nakamura ◽  
Satoshi Komatsu ◽  
Kyoko Iwata ◽  
Ayako Tezuka ◽  
...  

1997 ◽  
Vol 343 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Satoshi Komatsu ◽  
Norio Murai ◽  
Go Totsukawa ◽  
Mari Abe ◽  
Koji Akasaka ◽  
...  

2004 ◽  
Vol 79 (4) ◽  
pp. 543-551 ◽  
Author(s):  
S.P. Srinivas ◽  
M. Satpathy ◽  
P. Gallagher ◽  
E. Larivière ◽  
W. Van Driessche

Cytoskeleton ◽  
2015 ◽  
Vol 72 (12) ◽  
pp. 609-620 ◽  
Author(s):  
Tomo Kondo ◽  
Morihiro Okada ◽  
Kayo Kunihiro ◽  
Masayuki Takahashi ◽  
Yoshio Yaoita ◽  
...  

BIOPHYSICS ◽  
2006 ◽  
Vol 51 (5) ◽  
pp. 764-770
Author(s):  
D. V. Serebryanaya ◽  
O. V. Shcherbakova ◽  
T. V. Dudnakova ◽  
V. P. Shirinsky ◽  
A. V. Vorotnikov

2000 ◽  
Vol 275 (44) ◽  
pp. 34512-34520 ◽  
Author(s):  
Satoshi Komatsu ◽  
Takeo Yano ◽  
Masao Shibata ◽  
Richard A. Tuft ◽  
Mitsuo Ikebe

1994 ◽  
Vol 124 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Y Yamakita ◽  
S Yamashiro ◽  
F Matsumura

Phosphorylation of the regulatory light chain of myosin II (MLC) controls the contractility of actomyosin in nonmuscle and muscle cells. It has been reported that cdc2 phosphorylates MLC in vitro at Ser-1 or Ser-2 and Thr-9 which protein kinase C phosphorylates (Satterwhite, L. L., M. J. Lohka, K. L. Wilson, T. Y. Scherson, L. K. Cisek, J. L. Corden, and T. D. Pollard. 1992 J. Cell Biol. 118:595-605). We have examined in vivo phosphorylation of MLC during mitosis and after the release of mitotic arrest. Phosphate incorporation of MLC in mitotic cells is found to be 6-12 times greater than that in nonmitotic cells. Phosphopeptide maps have revealed that the MLC from mitotic cells is phosphorylated at Ser-1 and/or Ser-2 (Ser-1/2), but not at Thr-9. MLC is also phosphorylated to a much lesser extent at Ser-19 which myosin light chain kinase phosphorylates. On the other hand, MLC of nonmitotic cells is phosphorylated at Ser-19 but not at Ser-1/2. The extent of phosphate incorporation is doubled at 30 min after the release of mitotic arrest when some cells start cytokinesis. Phosphopeptide analyses have revealed that the phosphorylation at Ser-19 is increased 20 times, while the phosphorylation at Ser-1/2 is decreased by half. This high extent of MLC phosphorylation at Ser-19 is maintained for another 30 min and gradually decreased to near the level of interphase cells as cells complete spreading at 180 min. On the other hand, phosphorylation at Ser-1/2 is decreased to 18% at 60 min, and is practically undetectable at 180 min after the release of mitotic arrest. The stoichiometry of MLC phosphorylation has been determined by quantitation of phosphorylated and unphosphorylated forms of MLC separated on 2D gels. The molar ratio of phosphorylated MLC to total MLC is found to be 0.16 +/- 0.06 and 0.31 +/- 0.05 in interphase and mitotic cells, respectively. The ratio is increased to 0.49 +/- 0.05 at 30 min after the release of mitotic arrest. These results suggest that the change in the phosphorylation site from Ser-1/2 to Ser-19 plays an important role in signaling cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document