mitotic arrest
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 59)

H-INDEX

54
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiexiang Zhao ◽  
Ping Lu ◽  
Cong Wan ◽  
Yaping Huang ◽  
Manman Cui ◽  
...  

AbstractMammalian male germ cell development is a stepwise cell-fate transition process; however, the full-term developmental profile of male germ cells remains undefined. Here, by interrogating the high-precision transcriptome atlas of 11,598 cells covering 28 critical time-points, we demonstrate that cell-fate transition from mitotic to post-mitotic primordial germ cells is accompanied by transcriptome-scale reconfiguration and a transitional cell state. Notch signaling pathway is essential for initiating mitotic arrest and the maintenance of male germ cells’ identities. Ablation of HELQ induces developmental arrest and abnormal transcriptome reprogramming of male germ cells, indicating the importance of cell cycle regulation for proper cell-fate transition. Finally, systematic human-mouse comparison reveals potential regulators whose deficiency contributed to human male infertility via mitotic arrest regulation. Collectively, our study provides an accurate and comprehensive transcriptome atlas of the male germline cycle and allows for an in-depth understanding of the cell-fate transition and determination underlying male germ cell development.


2021 ◽  
Author(s):  
Mary Jane Tsang ◽  
Iain M Cheeseman

Mitotic chromosome segregation defects activate the Spindle Assembly Checkpoint (SAC), which inhibits the APC/C co-activator Cdc20 to induce a prolonged cell cycle arrest. Once errors are corrected, the SAC is silenced thereby allowing anaphase onset and mitotic exit to proceed. However, in the presence of persistent, unresolvable errors, cells can undergo "mitotic slippage", exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that allows cells to balance these dueling mitotic arrest and slippage behaviors remains unclear. Here we demonstrate that human cells modulate their mitotic arrest duration through the presence of conserved, alternative Cdc20 translational isoforms. Translation initiation at downstream start sites results in truncated Cdc20 isoforms that are resistant to SAC-mediated inhibition and promote mitotic exit even in the presence of mitotic perturbations. Targeted molecular changes or naturally-occurring mutations in cancer cells that alter the relative Cdc20 isoform levels or its translational regulatory control modulate both mitotic arrest duration and anti-mitotic drug sensitivity. Our work reveals a critical role for the differential translational regulation of Cdc20 in mitotic arrest timing, with important implications for the diagnosis and treatment of human cancers.


2021 ◽  
pp. canres.0061.2021
Author(s):  
Kumar Sanjiv ◽  
José Manuel Calderón-Montaño ◽  
Therese M Pham ◽  
Tom Erkers ◽  
Viktoriia Tsuber ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 971
Author(s):  
Amin Tahoun ◽  
Hanem El-Sharkawy ◽  
Samar M. Moustafa ◽  
Lina Jamil M. Abdel-Hafez ◽  
Ashraf Albrakati ◽  
...  

Enteropathogenic (EPEC) and Enterohemorrhagic (EHEC) Escherichia coli are considered emerging zoonotic pathogens of worldwide distribution. The pathogenicity of the bacteria is conferred by multiple virulence determinants, including the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system (T3SS) and effector proteins, including the multifunctional secreted effector protein (EspF). EspF sequences differ between EPEC and EHEC serotypes in terms of the number and residues of SH3-binding polyproline-rich repeats and N-terminal localization sequence. The aim of this study was to discover additional cellular interactions of EspF that may play important roles in E coli colonization using the Yeast two-hybrid screening system (Y2H). Y2H screening identified the anaphase-promoting complex inhibitor Mitotic Arrest-Deficient 2 Like 2 (MAD2L2) as a host protein that interacts with EspF. Using LUMIER assays, MAD2L2 was shown to interact with EspF variants from EHEC O157:H7 and O26:H11 as well as EPEC O127:H6. MAD2L2 is targeted by the non-homologous Shigella effector protein invasion plasmid antigen B (IpaB) to halt the cell cycle and limit epithelial cell turnover. Therefore, we postulate that interactions between EspF and MAD2L2 serve a similar function in promoting EPEC and EHEC colonization, since cellular turnover is a key method for bacteria removal from the epithelium. Future work should investigate the biological importance of this interaction that could promote the colonization of EPEC and EHEC E. coli in the host.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Nivedhitha Velayutham ◽  
Frank N van Leeuwen ◽  
Blanca Scheijen ◽  
Katherine E Yutzey

Background: Adult mammalian cardiomyocytes (CM) are predominantly post-mitotic and cannot proliferatively repair the heart following myocardial infarction (MI). Overexpression of the transcription factor Tbx20 in adult mouse CMs promotes proliferative cardiac repair post-MI, via mechanisms including direct repression of anti-proliferative genes p21 , Meis1 , and Btg2 . Btg2 (B-cell translocation gene 2), a tumor suppressor and transcriptional co-regulator, exhibits high structural and functional similarity with Btg1. However, both Btg1 and Btg2 (Btg1/2) are virtually uncharacterized in the heart. Here, we investigate the role of Btg1/2 in postnatal cardiac maturation. Methods and Results: By immunostaining in embryonic, neonatal, and adult C57BL/6 mouse hearts, the highest expression of Btg1/2 was observed in late fetal and early neonatal ventricles, concurrent with upregulation of other CM cell cycle inhibitors. In neonatal mouse CMs in vitro, siRNA-mediated loss of Btg2 leads to increased CM proliferation. In vivo , Btg1/2 constitutive single- and double- knockout (SKO and DKO respectively) mice exhibit normal heart weight-to-body weight ratios compared to age-matched wildtype (WT) controls, at postnatal day (P)7, P30, and 1 year after birth. Interestingly, at P7, DKO mice have significantly higher CM mitotic activity, as indicated by pHH3 staining, compared to WT. In addition, DKO mice also exhibit significantly smaller CM cross-sectional area at P7 compared to WT. However, by P15, CM mitotic activity and cell size are comparable between WT and Btg1/2 KO mice. Currently, siRNA-mediated knockdown of Btg1/2 in neonatal rat ventricular cardiomyocyte cultures and RNAseq studies are being performed, to assess the transcriptional regulatory roles of Btg1/2 in rodent CMs. Conclusions: Here, we highlight two novel regulators of postnatal CM maturation, Btg1 and Btg2, which are upregulated coincident with CM mitotic arrest in mice. Similar to p21 and Meis1, Btg1/2 depletion in mice induces a brief period of increased CM proliferative activity before onset of CM cell cycle arrest. Our results provide evidence for Btg1/2 working in tandem with other cardiac transcription factors and cell cycle regulators, to control CM mitotic arrest after birth.


Author(s):  
Aida Peña-Blanco ◽  
Manuel D. Haschka ◽  
Andreas Jenner ◽  
Theresia Zuleger ◽  
Tassula Proikas-Cezanne ◽  
...  

2021 ◽  
Vol 134 (8) ◽  
Author(s):  
Omeed Darweesh ◽  
Eman Al-Shehri ◽  
Hugo Falquez ◽  
Joachim Lauterwasser ◽  
Frank Edlich ◽  
...  

ABSTRACT In eukaryotes, entry into and exit from mitosis is regulated, respectively, by the transient activation and inactivation of Cdk1. Taxol, an anti-microtubule anti-cancer drug, prevents microtubule–kinetochore attachments to induce spindle assembly checkpoint (SAC; also known as the mitotic checkpoint)-activated mitotic arrest. SAC activation causes mitotic arrest by chronically activating Cdk1. One consequence of prolonged Cdk1 activation is cell death. However, the cytoplasmic signal(s) that link SAC activation to the initiation of cell death remain unknown. We show here that activated Cdk1 forms a complex with the pro-apoptotic proteins Bax and Bak (also known as BAK1) during SAC-induced apoptosis. Bax- and Bak-mediated delivery of activated Cdk1 to the mitochondrion is essential for the phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-xL (encoded by BCL2L1) and the induction of cell death. The interactions between a key cell cycle control protein and key pro-apoptotic proteins identify the Cdk1–Bax and Cdk1–Bak complexes as the long-sought-after cytoplasmic signal that couples SAC activation to the induction of apoptotic cell death.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikito Owa ◽  
Brian Dynlacht

AbstractCentromere-associated protein-E (CENP-E) is a kinesin motor localizing at kinetochores. Although its mitotic functions have been well studied, it has been challenging to investigate direct consequences of CENP-E removal using conventional methods because CENP-E depletion resulted in mitotic arrest. In this study, we harnessed an auxin-inducible degron system to achieve acute degradation of CENP-E. We revealed a kinetochore-independent role for CENP-E that removes pericentriolar material 1 (PCM1) from centrosomes in late S/early G2 phase. After acute loss of CENP-E, centrosomal Polo-like kinase 1 (Plk1) localization is abrogated through accumulation of PCM1, resulting in aberrant phosphorylation and destabilization of centrosomes, which triggers shortened astral microtubules and oblique cell divisions. Furthermore, we also observed centrosome and cell division defects in cells from a microcephaly patient with mutations in CENPE. Orientation of cell division is deregulated in some microcephalic patients, and our unanticipated findings provide additional insights into how microcephaly can result from centrosomal defects.


Reproduction ◽  
2021 ◽  
Vol 161 (3) ◽  
pp. 333-341
Author(s):  
Teruhito Ishihara ◽  
Oliver W Griffith ◽  
Gerard A Tarulli ◽  
Marilyn B Renfree

Male germ cells undergo two consecutive processes – pre-spermatogenesis and spermatogenesis – to generate mature sperm. In eutherian mammals, epigenetic information such as DNA methylation is dynamically reprogrammed during pre-spermatogenesis, before and during mitotic arrest. In mice, by the time germ cells resume mitosis, the majority of DNA methylation is reprogrammed. The tammar wallaby has a similar pattern of germ cell global DNA methylation reprogramming to that of the mouse during early pre-spermatogenesis. However, early male germline development in the tammar or in any marsupial has not been described previously, so it is unknown whether this is a general feature regulating male germline development or a more recent phenomenon in mammalian evolutionary history. To answer this, we examined germ cell nuclear morphology and mitotic arrest during male germline development in the tammar wallaby (Macropus eugenii), a marsupial that diverged from mice and humans around 160 million years ago. Tammar pro-spermatogonia proliferated after birth and entered mitotic arrest after day 30 postpartum (pp). At this time, they began moving towards the periphery of the testis cords and their nuclear size increased. Germ cells increased in number after day 100 pp which is the time that DNA methylation is known to be re-established in the tammar. This is similar to the pattern observed in the mouse, suggesting that resumption of germ cell mitosis and the timing of DNA methylation reprogramming are correlated and conserved across mammals and over long evolutionary timescales.


Sign in / Sign up

Export Citation Format

Share Document