smooth muscle
Recently Published Documents


TOTAL DOCUMENTS

52771
(FIVE YEARS 4636)

H-INDEX

278
(FIVE YEARS 20)

2022 ◽  
Vol 74 ◽  
pp. 101682
Author(s):  
Monique da Silva Dias Babinski ◽  
Lucas Alves Sarmento Pires ◽  
Albino Fonseca Junior ◽  
Jorge Henrique Martins Manaia ◽  
Marcio Antonio Babinski

2022 ◽  
Vol 12 (2) ◽  
pp. 427-431
Author(s):  
Wenju Yan ◽  
Yan Li ◽  
Gaiqin Li ◽  
Luhua Yin ◽  
Huanyi Zhang ◽  
...  

Cardiovascular diseases, including congenital and acquired cardiovascular diseases, impose a severe burden on healthcare systems worldwide. Although bone marrow-derived stem cells (BMSCs) therapy can be an effective therapeutic strategy for the heart disease, relatively low abundance, difficult accessibility, and small tissue volume hinder the clinical usefulness. Adipose tissue-derived stem cells (ADSCs) show similar potential with BMSCs to differentiate into lineages and tissues, such as smooth muscle cells, endothelial cells, and adipocytes, with attractiveness of obtaining adipose tissue easily and repeatedly, and a simple separation procedure. We briefly summarize the current understanding of the cardiomyocytes differentiated from ADSCs


2022 ◽  
Vol 23 (2) ◽  
pp. 867
Author(s):  
Sebastian F. Mause ◽  
Elisabeth Ritzel ◽  
Annika Deck ◽  
Felix Vogt ◽  
Elisa A. Liehn

Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12–CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12–CXCR4 axis in various modes of EPC–SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC–SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12–CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC–SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell–cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12–CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12–CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.


2022 ◽  
Author(s):  
Paul Palmquist-Gomes ◽  
Adrian Ruiz-Villalba ◽  
Juan Antonio Guadix ◽  
Juan Pablo Romero ◽  
Bettina Bessieres ◽  
...  

Coronary Artery Fistulae (CAFs) are cardiac congenital anomalies consisting of an abnormal communication of a coronary artery with either a cardiac chamber or another cardiac vessel. In humans, these congenital anomalies can lead to complications such as myocardial hypertrophy, endocarditis, heart dilatation and failure. Unfortunately, despite their clinical relevance, the aetiology of CAFs remains unknown. In this work, we have used two different species (mouse and avian embryos) to experimentally model CAFs morphogenesis. Both conditional Itga4 (alpha 4 integrin) epicardial deletion in mice and cryocauterisation of chick embryonic hearts disrupted epicardial development and ventricular wall growth, two essential events in coronary embryogenesis. Additional transcriptomics and in vitro analyses were performed to better understand how arterio-ventricular connections are originated in the embryonic heart. Our results suggest myocardial discontinuities in the developing heart promote the formation of endocardial pouch-like structures resembling human CAF. The structure of these CAF-like anomalies was compared with histopathological data from a paediatric heart CAF, showing histomorphological and immunochemical similarities, including an accumulation of smooth muscle positive cells in the pouch-like structure wall. In vitro experiments showed the abnormal contact between the epicardium and the endocardium may promote the precocious differentiation of epicardial cells to smooth muscle. Our results suggest that myocardial discontinuities in the embryonic ventricular wall promote the early contact of the endocardium with epicardial-derived coronary progenitors at the cardiac surface, leading to ventricular endocardial extrusion, precocious differentiation of coronary smooth muscle cells, and the formation of pouch-like aberrant coronary-like structures in direct connection with the ventricular lumen. Our results may provide relevant information for the early diagnosis of these congenital anomalies and the molecular mechanisms that regulate their embryogenesis.


2022 ◽  
Author(s):  
Amélie Bourhis ◽  
Valérie Roussel‐Robert ◽  
Jean‐Paul Viard ◽  
Matthieu Peyre ◽  
Franck Bielle

2022 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Krzysztof Kosiński ◽  
Damian Malinowski ◽  
Krzysztof Safranow ◽  
Violetta Dziedziejko ◽  
Andrzej Pawlik

Coronary artery disease (CAD) is a syndrome resulting from myocardial ischaemia of heterogeneous pathomechanism. Environmental and genetic factors contribute to its development. Atherosclerotic plaques that significantly narrow the lumen of coronary arteries cause symptoms of myocardial ischaemia. Acute coronary incidents are most often associated with plaque rupture or erosion accompanied by local activation of the coagulation system with thrombus formation. Plaque formation and stability are influenced by endothelial function and vascular smooth muscle cell function. In this study, we investigated the association between polymorphisms in genes affecting endothelial and vascular smooth muscle cell (VSMC) function and the occurrence of unstable angina pectoris. The aim of this study was to evaluate the association between the PECAM1 (rs1867624), COL4A2 (rs4773144), PHACTR1 (rs9349379) and LMOD1 (rs2820315) gene polymorphisms and the risk of unstable angina. The study included 232 patients with unstable angina diagnosed on the basis of clinical symptoms and coronary angiography and 144 healthy subjects with no significant coronary lumen stenosis at coronary angiography. There were no statistically significant differences in the distribution of COL4A2 rs4773144 and PECAM1 rs1867624 gene polymorphisms between patients with unstable angina and control subjects. In patients with unstable angina, there was an increased frequency of PHACTR1 rs9349379 G allele carriers (GG and AG genotypes) (GG+AG vs. AA, OR 1.71; 95% CI 1.10–2.66, p = 0.017) and carriers of the LMOD1 rs2820315 T allele (TT and CT genotypes) (TT+CT vs. CC, OR 1.65; 95% CI 1.09–2.51, p = 0.019) compared to the control group. The association between these alleles and unstable angina was confirmed by multivariate logistic regression analysis, in which the number of G (PHACTR1 rs9349379) and T (LMOD1 rs2820315) alleles was an independent risk factor for unstable angina. The results suggest an association between PHACTR1 rs9349379 and LMOD1 rs2820315 polymorphisms and the risk of unstable angina.


2022 ◽  
Vol 119 (3) ◽  
pp. e2117232119
Author(s):  
Giulio Franchini ◽  
Ivan D. Breslavsky ◽  
Francesco Giovanniello ◽  
Ali Kassab ◽  
Gerhard A. Holzapfel ◽  
...  

Experimental data and a suitable material model for human aortas with smooth muscle activation are not available in the literature despite the need for developing advanced grafts; the present study closes this gap. Mechanical characterization of human descending thoracic aortas was performed with and without vascular smooth muscle (VSM) activation. Specimens were taken from 13 heart-beating donors. The aortic segments were cooled in Belzer UW solution during transport and tested within a few hours after explantation. VSM activation was achieved through the use of potassium depolarization and noradrenaline as vasoactive agents. In addition to isometric activation experiments, the quasistatic passive and active stress–strain curves were obtained for circumferential and longitudinal strips of the aortic material. This characterization made it possible to create an original mechanical model of the active aortic material that accurately fits the experimental data. The dynamic mechanical characterization was executed using cyclic strain at different frequencies of physiological interest. An initial prestretch, which corresponded to the physiological conditions, was applied before cyclic loading. Dynamic tests made it possible to identify the differences in the viscoelastic behavior of the passive and active tissue. This work illustrates the importance of VSM activation for the static and dynamic mechanical response of human aortas. Most importantly, this study provides material data and a material model for the development of a future generation of active aortic grafts that mimic natural behavior and help regulate blood pressure.


Sign in / Sign up

Export Citation Format

Share Document