Fracture assessment of an interface crack between two dissimilar magnetoelectroelastic materials under heat flow and magnetoelectromechanical loadings

2011 ◽  
Vol 24 (5) ◽  
pp. 429-438 ◽  
Author(s):  
Peng Ma ◽  
Wenjie Feng ◽  
Ray Kai-Leung Su
2014 ◽  
Vol 2014.67 (0) ◽  
pp. _216-1_-_216-2_
Author(s):  
Kazuhiro ODA ◽  
Ryohei TSUTSUMI ◽  
Noriko TSUTSUMI

1990 ◽  
Vol 57 (2) ◽  
pp. 359-364 ◽  
Author(s):  
An-Yu Kuo

The thermal stress problem of an “open” crack situated at the interface of two bonded, dissimilar, semi-infinite solids subjected to a uniform heat flow is studied. Heat transmission between adjacent crack surfaces is assumed to be proportional to the temperature difference between the crack surfaces with a proportional constant h, which is defined as the contact coefficient or interface conductance. Temperature distribution of the problem is obtained by superimposing the temperature field for a perfectly bonded composite solid and the temperature fields for a series of distributed thermal dipoles at the crack location. The distribution function of the dipoles is obtained by solving a singular Fredholm integral equation. Stresses are then expressed in terms of a thermoelastic potential, corresponding to the temperature distribution, and two Muskhelishvili stress functions. Stress intensity factors are calculated by solving a Hilbert arc problem, which results from the crack surface boundary conditions and the continuity conditions at the bonded interface. Thermal stress intensity factors are found to depend upon an additional independent parameter, the Biot number λ = (ah/k), on the crack surface, where a is half crack length and k is thermal conductivity. Dipole distribution and stress intensity factors for two example composite solids, Cu/Al and Ti/Al2O3, are calculated and plotted as functions of λ. Magnitude of the required mechanical loads to keep the interface crack open is also estimated.


1993 ◽  
Vol 60 (2) ◽  
pp. 432-437 ◽  
Author(s):  
G. Yan ◽  
T. C. T. Ting

It is known that the stress singularities at an interface crack tip of bimaterials with the effects of heat flow may have the form r−1/2 (ln r). The existence conditions of the higher order singularitiy r−1/2 (ln r) are studied for monoclinic bimaterials whose plane of symmetry is at x3 = 0. It is shown that the higher order singularity does not exist if the bimaterial is mismatched. If the bimaterial is non-mismatched, the higher order singularity does not exist when a certain condition is satisfied. This condition is given explicitly for monoclinic bimaterials with the plane of symmetry of x3 = 0 and in a simple form for isotropic bimaterials.


Sign in / Sign up

Export Citation Format

Share Document