Spectral Representation of Birth–Death Processes

2021 ◽  
pp. 146-253
1991 ◽  
Vol 23 (4) ◽  
pp. 683-700 ◽  
Author(s):  
Erik A. Van Doorn

For a birth–death process (X(t), ) on the state space {−1, 0, 1, ·· ·}, where −1 is an absorbing state which is reached with certainty and {0, 1, ·· ·} is an irreducible class, we address and solve three problems. First, we determine the set of quasi-stationary distributions of the process, that is, the set of initial distributions which are such that the distribution of X(t), conditioned on non-absorption up to time t, is independent of t. Secondly, we determine the quasi-limiting distribution of X(t), that is, the limit as t→∞ of the distribution of X(t), conditioned on non-absorption up to time t, for any initial distribution with finite support. Thirdly, we determine the rate of convergence of the transition probabilities of X(t), conditioned on non-absorption up to time t, to their limits. Some examples conclude the paper. Our main tools are the spectral representation for the transition probabilities of a birth–death process and a duality concept for birth–death processes.


Author(s):  
Erik A. van Doorn ◽  
Pauline Schrijner

AbstractWe study two aspects of discrete-time birth-death processes, the common feature of which is the central role played by the decay parameter of the process. First, conditions for geometric ergodicity and bounds for the decay parameter are obtained. Then the existence and structure of quasi-stationary distributions are discussed. The analyses are based on the spectral representation for the n-step transition probabilities of a birth-death process developed by Karlin and McGregor.


1965 ◽  
Vol 2 (2) ◽  
pp. 405-428 ◽  
Author(s):  
J. Keilson

A previous paper, hereafter referred to as “I”, reviewed the structure of a class of “regular” diffusion and birth-death processes in one dimension. Such processes were seen to have a basic simplicity manifesting itself in two ways: (1) The ergodic processes have an ergodic distribution that one may write down at once; (2) All such processes have transition functions for which a simple spectral representation is available. The simple spectral structure affords theoretical insight into the structure of related passage time densities, and numerical techniques for their evaluation. In particular, a variational principle is available for estimating the principal eigenvalues and eigenvectors.


1991 ◽  
Vol 23 (04) ◽  
pp. 683-700 ◽  
Author(s):  
Erik A. Van Doorn

For a birth–death process (X(t), ) on the state space {−1, 0, 1, ·· ·}, where −1 is an absorbing state which is reached with certainty and {0, 1, ·· ·} is an irreducible class, we address and solve three problems. First, we determine the set of quasi-stationary distributions of the process, that is, the set of initial distributions which are such that the distribution of X(t), conditioned on non-absorption up to time t, is independent of t. Secondly, we determine the quasi-limiting distribution of X(t), that is, the limit as t→∞ of the distribution of X(t), conditioned on non-absorption up to time t, for any initial distribution with finite support. Thirdly, we determine the rate of convergence of the transition probabilities of X(t), conditioned on non-absorption up to time t, to their limits. Some examples conclude the paper. Our main tools are the spectral representation for the transition probabilities of a birth–death process and a duality concept for birth–death processes.


1965 ◽  
Vol 2 (02) ◽  
pp. 405-428 ◽  
Author(s):  
J. Keilson

A previous paper, hereafter referred to as “I”, reviewed the structure of a class of “regular” diffusion and birth-death processes in one dimension. Such processes were seen to have a basic simplicity manifesting itself in two ways: (1) The ergodic processes have an ergodic distribution that one may write down at once; (2) All such processes have transition functions for which a simple spectral representation is available. The simple spectral structure affords theoretical insight into the structure of related passage time densities, and numerical techniques for their evaluation. In particular, a variational principle is available for estimating the principal eigenvalues and eigenvectors.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Sign in / Sign up

Export Citation Format

Share Document