2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayashree Nair ◽  
T. Padma

This paper describes an authentication scheme that uses Diophantine equations based generation of the secret locations to embed the authentication and recovery watermark in the DWT sub-bands. The security lies in the difficulty of finding a solution to the Diophantine equation. The scheme uses the content invariant features of the image as a self-authenticating watermark and a quantized down sampled approximation of the original image as a recovery watermark for visual authentication, both embedded securely using secret locations generated from solution of the Diophantine equations formed from the PQ sequences. The scheme is mildly robust to Jpeg compression and highly robust to Jpeg2000 compression. The scheme also ensures highly imperceptible watermarked images as the spatio –frequency properties of DWT are utilized to embed the dual watermarks.


2016 ◽  
Vol 59 (2) ◽  
pp. 349-357 ◽  
Author(s):  
STEPHEN HARRAP ◽  
NIKOLAY MOSHCHEVITIN

AbstractWe prove a result in the area of twisted Diophantine approximation related to the theory of Schmidt games. In particular, under certain restrictions we give an affirmative answer to the analogue in this setting of a famous conjecture of Schmidt from Diophantine approximation.


2008 ◽  
Vol 144 (1) ◽  
pp. 119-144 ◽  
Author(s):  
ARNAUD DURAND

AbstractA central problem motivated by Diophantine approximation is to determine the size properties of subsets of$\R^d$ ($d\in\N$)of the formwhere ‖⋅‖ denotes an arbitrary norm,Ia denumerable set, (xi,ri)i∈ Ia family of elements of$\R^d\$× (0, ∞) and ϕ a nonnegative nondecreasing function defined on [0, ∞). We show that ifFId, where Id denotes the identity function, has full Lebesgue measure in a given nonempty open subsetVof$\R^d\$, the setFϕbelongs to a class Gh(V) of sets with large intersection inVwith respect to a given gauge functionh. We establish that this class is closed under countable intersections and that each of its members has infinite Hausdorffg-measure for every gauge functiongwhich increases faster thanhnear zero. In particular, this yields a sufficient condition on a gauge functiongsuch that a given countable intersection of sets of the formFϕhas infinite Hausdorffg-measure. In addition, we supply several applications of our results to Diophantine approximation. For any nonincreasing sequenceψof positive real numbers converging to zero, we investigate the size and large intersection properties of the sets of all points that areψ-approximable by rationals, by rationals with restricted numerator and denominator and by real algebraic numbers. This enables us to refine the analogs of Jarník's theorem for these sets. We also study the approximation of zero by values of integer polynomials and deduce several new results concerning Mahler's and Koksma's classifications of real transcendental numbers.


Sign in / Sign up

Export Citation Format

Share Document