badly approximable
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
YIFTACH DAYAN

Abstract We show that fractal percolation sets in $\mathbb{R}^{d}$ almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if $E\subset\mathbb{R}^{d}$ is a realisation of a fractal percolation process, then almost surely (conditioned on $E\neq\emptyset$ ), for every countable collection $\left(f_{i}\right)_{i\in\mathbb{N}}$ of $C^{1}$ diffeomorphisms of $\mathbb{R}^{d}$ , $\dim_{H}\left(E\cap\left(\bigcap_{i\in\mathbb{N}}f_{i}\left(\text{BA}_{d}\right)\right)\right)=\dim_{H}\left(E\right)$ , where $\text{BA}_{d}$ is the set of badly approximable vectors in $\mathbb{R}^{d}$ . We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to $\dim_{H}\left(E\right)$ . We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to $\mathbb{R}^{d}$ yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.


Author(s):  
REYNOLD FREGOLI

Abstract Let \[||x||\] denote the distance from \[x \in \mathbb{R}\] to the nearest integer. In this paper, we prove a new existence and density result for matrices \[A \in {\mathbb{R}^{m \times n}}\] satisfying the inequality \[\mathop {\lim \inf }\limits_{|q{|_\infty } \to + \infty } \prod\limits_{j = 1}^n {\max } \{ 1,|{q_j}|\} \log {\left( {\prod\limits_{j = 1}^n {\max } \{ 1,|{q_j}|\} } \right)^{m + n - 1}}\prod\limits_{i = 1}^m {{A_i}q} > 0,\] where q ranges in \[{\mathbb{Z}^n}\] and A i denote the rows of the matrix A . This result extends previous work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently available. We therefore develop a substantially different method, based on Cantor-like set constructions of Badziahin and Velani. Matrices with the above property also appear to have very small sums of reciprocals of fractional parts. This fact helps us to shed light on a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in higher dimension.


Mathematika ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 639-646
Author(s):  
Sam Chow ◽  
Agamemnon Zafeiropoulos

2020 ◽  
Vol 195 (1) ◽  
pp. 1-11
Author(s):  
Natalia Dyakova
Keyword(s):  

Fractals ◽  
2019 ◽  
Vol 27 (03) ◽  
pp. 1950025 ◽  
Author(s):  
QIANQIAN YANG ◽  
SHUAILING WANG

For any [Formula: see text], let [Formula: see text] be the [Formula: see text]-transformation dynamical system. For any sequence [Formula: see text], we investigate the following badly approximable set: [Formula: see text] In this paper, we determine the Lebesgue measure and Hausdorff dimension of the set [Formula: see text] completely for any [Formula: see text] and any sequence [Formula: see text].


2019 ◽  
Vol 108 (2) ◽  
pp. 177-201
Author(s):  
DZMITRY BADZIAHIN ◽  
EVGENIY ZORIN

In this paper we extend and generalize, up to a natural bound of the method, our previous work Badziahin and Zorin [‘Thue–Morse constant is not badly approximable’, Int. Math. Res. Not. IMRN 19 (2015), 9618–9637] where we proved, among other things, that the Thue–Morse constant is not badly approximable. Here we consider Laurent series defined with infinite products $f_{d}(x)=\prod _{n=0}^{\infty }(1-x^{-d^{n}})$, $d\in \mathbb{N}$, $d\geq 2$, which generalize the generating function $f_{2}(x)$ of the Thue–Morse number, and study their continued fraction expansion. In particular, we show that the convergents of $x^{-d+1}f_{d}(x)$ have a regular structure. We also address the question of whether the corresponding Mahler numbers $f_{d}(a)\in \mathbb{R}$, $a,d\in \mathbb{N}$, $a,d\geq 2$, are badly approximable.


Sign in / Sign up

Export Citation Format

Share Document