Products of conjugacy classes in algebraic groups and generators of dense subgroups

Author(s):  
Nikolai L. Gordeev
2008 ◽  
Vol 165 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Anupam Singh ◽  
Maneesh Thakur

Author(s):  
P. Bala ◽  
R. W. Carter

LetGbe a simple adjoint algebraic group over an algebraically closed fieldK. We are concerned to describe the conjugacy classes of unipotent elements ofG. Goperates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements ofGand the nilpotent elements ofgwhich preserves theG-action, provided that the characteristic ofKis either 0 or a ‘good prime’ forG. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjointG-action.


2020 ◽  
Vol 71 (1) ◽  
pp. 321-334 ◽  
Author(s):  
Christopher Attenborough ◽  
Michael Bate ◽  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

Abstract Let $K$ be a reductive subgroup of a reductive group $G$ over an algebraically closed field $k$. The notion of relative complete reducibility, introduced in [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832], gives a purely algebraic description of the closed $K$-orbits in $G^n$, where $K$ acts by simultaneous conjugation on $n$-tuples of elements from $G$. This extends work of Richardson and is also a natural generalization of Serre’s notion of $G$-complete reducibility. In this paper we revisit this idea, giving a characterization of relative $G$-complete reducibility, which directly generalizes equivalent formulations of $G$-complete reducibility. If the ambient group $G$ is a general linear group, this characterization yields representation-theoretic criteria. Along the way, we extend and generalize several results from [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832].


Sign in / Sign up

Export Citation Format

Share Document