reductive subgroup
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

2020 ◽  
pp. 1-30
Author(s):  
Peter Crooks ◽  
Maarten van Pruijssen

Abstract This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group  $G$ , a reductive subgroup $H\subseteq G$ , and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$ , defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of  $G$ . This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$ , $n\geqslant 3$ ), prompting us to seek necessary and sufficient conditions for non-emptiness. We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$ -regularity of $(G,H)$ . This $\mathfrak{a}$ -regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$ . We also provide a classification of the $\mathfrak{a}$ -regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.


2020 ◽  
Vol 71 (1) ◽  
pp. 321-334 ◽  
Author(s):  
Christopher Attenborough ◽  
Michael Bate ◽  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

Abstract Let $K$ be a reductive subgroup of a reductive group $G$ over an algebraically closed field $k$. The notion of relative complete reducibility, introduced in [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832], gives a purely algebraic description of the closed $K$-orbits in $G^n$, where $K$ acts by simultaneous conjugation on $n$-tuples of elements from $G$. This extends work of Richardson and is also a natural generalization of Serre’s notion of $G$-complete reducibility. In this paper we revisit this idea, giving a characterization of relative $G$-complete reducibility, which directly generalizes equivalent formulations of $G$-complete reducibility. If the ambient group $G$ is a general linear group, this characterization yields representation-theoretic criteria. Along the way, we extend and generalize several results from [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832].


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2011 ◽  
Vol 22 (06) ◽  
pp. 775-787
Author(s):  
INDRANIL BISWAS

Let EG be a stable principal G–bundle over a compact connected Kähler manifold, where G is a connected reductive linear algebraic group defined over ℂ. Let H ⊂ G be a complex reductive subgroup which is not necessarily connected, and let EH ⊂ EG be a holomorphic reduction of structure group to H. We prove that EH is preserved by the Einstein–Hermitian connection on EG. Using this we show that if EH is a minimal reductive reduction (which means that there is no complex reductive proper subgroup of H to which EH admits a holomorphic reduction of structure group), then EH is unique in the following sense: For any other minimal reduction of structure group (H′, EH′) of EG to some reductive subgroup H′, there is some element g ∈ G such that H′ = g-1Hg and EH′ = EHg. As an application, we show the following: Let M be a simply connected, irreducible smooth complex projective variety of dimension n such that the Picard number of M is one. If the canonical line bundle KM is ample, then the algebraic holonomy of the holomorphic tangent bundle T1, 0M is GL (n, ℂ). If [Formula: see text] is ample, the rank of the Picard group of M is one, the biholomorphic automorphism group of M is finite, and M admits a Kähler–Einstein metric, then the algebraic holonomy of T1, 0M is GL (n, ℂ). These answer some questions posed in V. Balaji and J. Kollár, Publ. Res. Inst. Math. Sci.44 (2008) 183–211.


2008 ◽  
Vol 190 ◽  
pp. 105-128 ◽  
Author(s):  
Russell Fowler ◽  
Gerhard Röhrle

Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we consider particular classes of connected reductive subgroups H of G and show that the cocharacters of H that are associated to a given nilpotent element e in the Lie algebra of H are precisely the cocharacters of G associated to e that take values in H. In particular, we show that this is the case provided H is a connected reductive subgroup of G of maximal rank; this answers a question posed by J. C. Jantzen.


2006 ◽  
Vol 58 (2) ◽  
pp. 344-361 ◽  
Author(s):  
David Goldberg

AbstractWe study reducibility of representations parabolically induced from discrete series representations of SUn(F) for F a p-adic field of characteristic zero. We use the approach of studying the relation between R-groups when a reductive subgroup of a quasi-split group and the full group have the same derived group. We use restriction to show the quotient of R-groups is in natural bijection with a group of characters. Applying this to SUn(F) ⊂ Un(F) we show the R group for SUn is the semidirect product of an R-group for Un(F) and this group of characters. We derive results on nonabelian R-groups and generic elliptic representations as well.


Sign in / Sign up

Export Citation Format

Share Document