Large eddy simulation of a pulsed jet in cross-flow

2012 ◽  
Vol 695 ◽  
pp. 1-34 ◽  
Author(s):  
Axel Coussement ◽  
O. Gicquel ◽  
G. Degrez

AbstractThis study quantifies the mixing that results from a pulsed jet in cross-flow in the near jet region. By large eddy simulation computations, it also helps to understand the physical phenomena involved in the formation of the pulsed jet in cross-flow. The boundary conditions of the jet inlet are implemented via a Navier–Stokes characteristic boundary condition coupled with a Fourier series development. The signals used to pulse the jet inlet are a square or a sine wave. A new way of characterizing the mixing is introduced with the goal of easily interpreting and quantifying the complicated mixing process involved in a pulsed jet in cross-flow flow fields. Different flow configurations, pulsed and non-pulsed, are computed and compared, keeping the root mean square value of the signal constant. This comparison not only allows the characterization of the mixing but also illustrates some of the properties of the mixing characterization.

Author(s):  
Kalyana C. Gottiparthi ◽  
Ramanan Sankaran ◽  
Anthony M. Ruiz ◽  
Guilhem Lacaze ◽  
Joseph C. Oefelein

2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Author(s):  
Terence Ma ◽  
Andreas M. Kempf

Premixed combustion in the ORACLES dump combustor is investigated by Large-Eddy Simulation. The results are compared with experimental measurements of mean and fluctuating velocities at various points inside the combustor. The LES is performed with the in-house PsiPhi code, which has been modified to account for compressibility so that flame-acoustic interactions can be studied. The modifications include the use of proper boundary conditions that are based on the Navier-Stokes Characteristic Boundary Conditions (NSCBC) [1]. A fixed velocity and temperature inlet as well as a partially reflecting outlet are selected. The reaction rate is modelled using algebraic expressions for the generalised flame surface density (FSD) Σgen. A selection of FSD models [2] were previously tested using the incompressible version of PsiPhi and this work examines three additional models. Previous incompressible works [2, 3] on this setup emulated the effect of acoustic oscillations by introducing sinusoidal pulsations at the inlet with a frequency of 50Hz. We apply the same technique for the simulations and match the results with those from the modified compressible version, albeit for a compact domain which cannot be expected to capture the lowest acoustic frequencies. Apart from assessing performance, we also make comparisons of the simulation cost and stability to gain a better perspective of whether new FSD models and the compressible description are favorable.


Author(s):  
Johannes Weinzierl ◽  
Michael Kolb ◽  
Denise Ahrens ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

The reduction of full and part load emissions and the increase of the turndown ratio are important goals for gas turbine combustor development. Combustion techniques, which generate lower NOx emissions than unstaged premixed combustion in the full load range, and which have the potential of reducing minimum load while complying with emission legislation, are of high technical interest. Therefore, axial-staged combustion systems have been designed, either with or without expansion in a turbine stage between both stages. In its simpler form without intermediate expansion stage, a flow of hot combustion products is generated in the first stage of the premixed combustor, which interacts with the jets of premixed gas injected into the second stage. The level of NOx formation during combustion of the premixed jets in the hot cross flow determines the advantage of axially staged combustion regarding full load NOx emission reduction. Employing large-eddy simulation in openfoam, a tool has been developed, which allows to investigate staged combustion systems including not only temperature distribution but also NOx emissions under engine conditions. To be able to compute NOx formation correctly, the combustion process has to be captured with sufficient level of accuracy. This is achieved by the partially stirred reactor model. It is combined with a newly developed NOx model, which is a combination of a tabulation technique for the NOx source term based on mixture fraction and progress variable and a partial equilibrium approach. The NOx model is successfully validated with generic burner stabilized flame data and with measurements from a large-scale reacting jet in cross flow experiment. The new NOx model is finally used to compute a reacting jet in cross flow under engine conditions to investigate the NOx formation of staged combustion in detail. The comparison between the atmospheric and the pressurized configuration gives valuable insight in the NOx formation process. It can be shown that the NOx formation within a reacting jet in cross flow configuration is reduced and not only diluted.


Author(s):  
Mostafa Esmaeili ◽  
Asghar Afshari ◽  
Farhad A. Jaberi

An Eulerian–Lagrangian mathematical/computational methodology is employed for large-eddy simulation (LES) and detailed study of turbulent mixing in jet in cross-flow (JICF) configuration. Accurate prediction of mixing in JICF is crucially important to the development of advanced combustion systems. A high-order multiblock finite difference (FD) computational algorithm is used to solve the Eulerian velocity and pressure equations in a generalized coordinate system. The composition field, describing the mixing, is obtained from the filtered mass density function (FMDF) and its stochastic Lagrangian Monte-Carlo (MC) solver. Our simulations are shown to accurately predict the important flow features present in JICF such as the counter-rotating vortex pair (CVP), horseshoe, shear layer, and wake vortices. The consistency of the FD and MC parts of the hybrid LES/FMDF model is established for the simulated JICF in various conditions, indicating the numerical accuracy of the model. The effects of parameters influencing the jet penetration, entrainment, and turbulent mixing such as the jet velocity profile, and jet pulsation are investigated. The results show that the jet exit velocity profile significantly changes the trajectory and mixing of injected fluid. The jet pulsation is also shown to enhance the mixing depending on the flow Strouhal number. The LES/FMDF results are shown to be in good agreement with the available experimental data, confirming the reliability of LES/FMDF method for numerical simulation of turbulent mixing in complex flow configurations.


2014 ◽  
Vol 101 ◽  
pp. 136-154 ◽  
Author(s):  
S. Bocquet ◽  
J.-C. Jouhaud ◽  
H. Deniau ◽  
J.-F. Boussuge ◽  
M.J. Estève

Sign in / Sign up

Export Citation Format

Share Document