nox formation
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 92)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 157 ◽  
pp. 112020
Author(s):  
Zia ur Rahman ◽  
Xuebin Wang ◽  
Jiaye Zhang ◽  
Zhiwei Yang ◽  
Gaofeng Dai ◽  
...  

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123149
Author(s):  
Shijie Zheng ◽  
Yan Qian ◽  
Xuebin Wang ◽  
Milan Vujanović ◽  
Yingjia Zhang ◽  
...  

2022 ◽  
Vol 148 (1) ◽  
Author(s):  
Chunli Tang ◽  
Tao Zhu ◽  
Limin Wang ◽  
Xinyu Gao ◽  
Xiangzhao Meng ◽  
...  

2022 ◽  
Vol 36 (06) ◽  
Author(s):  
VO TAN CHAU ◽  
DUONG HOANG LONG ◽  
CHINDA CHAROENPHONPHANICH

The diesel combustion is primarily controlled by the fuel injection process. The start of injection therefore has a significant effect in the engine, which relates large amount of injected fuel at the beginning of injection to produces a strong burst of combustion with a high local temperature and high NOx formation. This paper investigated the impact of Hydrotreated Vegetable Oil (HVO) and blends of 10%, 20%, 30%, 50%, 80% by mass of HVO with commercial diesel fuel (mixed 7% FAME-B7) to injection process under the Zeuch’s method and compared to that of B7. The focus was on the injection flow rate in the variation of injection pressures, back pressures, and energizing times. The experimental results indicated that injection delay was inversely correlated to HVO fraction in the blend as well as injection pressure. At different injection pressures, HVO revealed a slightly lower injection rate than diesel that resulted in smaller injection quantity. Discharge coefficient was recognized larger with HVO and its blends. At 0.5ms of energizing time, injection rate profile displayed the incompletely opening of needle. Insignificant difference in injection rate was observed as increasing of back pressure.


Author(s):  
Ruslana Kolodnytska ◽  
Oleksandr Kravchenko ◽  
Juraj Gerlici ◽  
Kateryna Kravchenko

Automobiles with internal combustion engine using diesel fuel have large harmful emissions of nitrogen oxides and soot, which affect the health of the population and especially children and carbon dioxide, which is dangerous for the planet as a whole. Biodiesel is used in Europe as an additive to diesel fuel to reduce soot emissions (including carcinogens), as well as to improve the balance of carbon dioxide on the planet. Using the biodiesel in internal combustion engines tends to show higher nitrogen oxides emissions compared to diesel. In this paper, the impact of flame temperature, ignition delay and density on NOx formation of biodiesel and its component for both stationary engine and automotive engine were analysed. Emissions of nitrogen oxides increase with increasing load. In no-load modes, biodiesel shows lower emissions of nitrogen oxides than diesel.


2022 ◽  
pp. 39-68
Author(s):  
Avinash Alagumalai ◽  
Amin Jodat ◽  
Omid Mahian ◽  
B. Ashok

Author(s):  
Ibham Veza ◽  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Mohd Azman Abas ◽  
Mohd Rozi Mohd Perang ◽  
...  

Homogeneous charge compression ignition (HCCI) engine has emerged as a promising combustion technology. Theoretically, an HCCI engine can reduce both NOx and soot emissions significantly down to almost zero levels. This is possible as a result of two fundamental processes that occur in the HCCI engine, i.e. the homogeneous mixture and its autoignition characteristics. Neither spark plug nor injector is used in the HCCI engine. The autoignition of the homogeneous mixture is solely influenced by its chemical reactions inside the combustion chamber. However, this is where the problems start to occur. At low loads or too lean mixtures, misfire may occur, thus increasing the HC and CO emissions. At high loads or too rich mixtures, soot emissions and knocking tendency may increase. Moreover, an undesirable pressure rise due to knocking will increase the combustion temperature and potentially increase the probability of NOx formation. Therefore, the operating range of HCCI engine is very limited only to part loads. Controlling its combustion phasing play an important role to extend the narrow operating range of the HCCI engine. Despite numerous review articles have been published, classification of the approaches to achieve HCCI combustion in diesel engines were rarely presented clearly. Therefore, this review article aims to provide a concise and comprehensive classification of HCCI combustion so that the role and position of each strategy found in the literature could be understood distinctively. In short, two important questions must be solved to have successful HCCI combustion; (1) how to form a homogeneous mixture? and (2) how to control its auto-ignition?


Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2021 ◽  
Vol 8 (4) ◽  
pp. 1465-1480
Author(s):  
Paolo Iodice ◽  
Amedeo Amoresano ◽  
Giuseppe Langella

Ethanol can be used as an alternative fuel for spark-ignition (SI) engines to increase the octane number and oxygen content of ethanol/gasoline blends, thereby reducing dependence on fossil fuels and the exhaust emissions of incomplete combustion products. Although it is widely agreed that ethanol can reduce CO and HC exhaust emissions, the literature on ethanol and NOX emissions is far from conclusive; hence there is a need for an in-depth, updated review of ethanol/gasoline blends in SI engines and the relative production of NOX emissions. In light of that, the present work aims to provide a comprehensive literature review on the current state of ethanol combustion in SI engines to shed definitive light on the potential changes in NOX emissions under various operating conditions. The first part of this paper discusses the feasibility of ethanol as an alternative transportation fuel, including world production and ethanol production processes. The physicochemical properties of ethanol and gasoline are then compared to analyze their effects on combustion efficiency and exhaust emissions. Then, the pathways of NOX formation inside the cylinder of SI engines are discussed in depth. Finally, we review and critically discuss the effects of ethanol concentration in blends and different engine parameters on NOX formation.


Sign in / Sign up

Export Citation Format

Share Document