scholarly journals Well-posed and ill-posed behaviour of the -rheology for granular flow

2015 ◽  
Vol 779 ◽  
pp. 794-818 ◽  
Author(s):  
T. Barker ◽  
D. G. Schaeffer ◽  
P. Bohorquez ◽  
J. M. N. T. Gray

In light of the successes of the Navier–Stokes equations in the study of fluid flows, similar continuum treatment of granular materials is a long-standing ambition. This is due to their wide-ranging applications in the pharmaceutical and engineering industries as well as to geophysical phenomena such as avalanches and landslides. Historically this has been attempted through modification of the dissipation terms in the momentum balance equations, effectively introducing pressure and strain-rate dependence into the viscosity. Originally, a popular model for this granular viscosity, the Coulomb rheology, proposed rate-independent plastic behaviour scaled by a constant friction coefficient ${\it\mu}$. Unfortunately, the resultant equations are always ill-posed. Mathematically ill-posed problems suffer from unbounded growth of short-wavelength perturbations, which necessarily leads to grid-dependent numerical results that do not converge as the spatial resolution is enhanced. This is unrealistic as all physical systems are subject to noise and do not blow up catastrophically. It is therefore vital to seek well-posed equations to make realistic predictions. The recent ${\it\mu}(I)$-rheology is a major step forward, which allows granular flows in chutes and shear cells to be predicted. This is achieved by introducing a dependence on the non-dimensional inertial number $I$ in the friction coefficient ${\it\mu}$. In this paper it is shown that the ${\it\mu}(I)$-rheology is well-posed for intermediate values of $I$, but that it is ill-posed for both high and low inertial numbers. This result is not obvious from casual inspection of the equations, and suggests that additional physics, such as enduring force chains and binary collisions, becomes important in these limits. The theoretical results are validated numerically using two implicit schemes for non-Newtonian flows. In particular, it is shown explicitly that at a given resolution a standard numerical scheme used to compute steady-uniform Bagnold flow is stable in the well-posed region of parameter space, but is unstable to small perturbations, which grow exponentially quickly, in the ill-posed domain.

2015 ◽  
Vol 23 (6) ◽  
Author(s):  
Roman Puzyrev ◽  
Alexander Shlapunov

AbstractWe consider a boundary value problem for a Lamé type operator, which corresponds to a linearisation of the Navier–Stokes' equations for compressible flow of Newtonian fluids in the case where pressure is known. It consists of recovering a vector function, satisfying the parabolic Lamé type system in a cylindrical domain, via its values and the values of the boundary stress tensor on a given part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn the problem to a well-posed one. Using the integral representation's method we obtain a uniqueness theorem and solvability conditions for the problem. We also describe conditions, providing dense solvability of the problem.


2017 ◽  
Vol 828 ◽  
pp. 5-32 ◽  
Author(s):  
T. Barker ◽  
J. M. N. T. Gray

In recent years considerable progress has been made in the continuum modelling of granular flows, in particular the $\unicode[STIX]{x1D707}(I)$-rheology, which links the local viscosity in a flow to the strain rate and pressure through the non-dimensional inertial number $I$. This formulation greatly benefits from its similarity to the incompressible Navier–Stokes equations as it allows many existing numerical methods to be used. Unfortunately, this system of equations is ill posed when the inertial number is too high or too low. The consequence of ill posedness is that the growth rate of small perturbations tends to infinity in the high wavenumber limit. Due to this, numerical solutions are grid dependent and cannot be taken as being physically realistic. In this paper changes to the functional form of the $\unicode[STIX]{x1D707}(I)$ curve are considered, in order to maximise the range of well-posed inertial numbers, while preserving the overall structure of the equations. It is found that when the inertial number is low there exist curves for which the equations are guaranteed to be well posed. However when the inertial number is very large the equations are found to be ill posed regardless of the functional dependence of $\unicode[STIX]{x1D707}$ on $I$. A new $\unicode[STIX]{x1D707}(I)$ curve, which is inspired by the analysis of the governing equations and by experimental data, is proposed here. In order to test this regularised rheology, transient granular flows on inclined planes are studied. It is found that simulations of flows, which show signs of ill posedness with unregularised models, are numerically stable and match key experimental observations when the regularised model is used. This paper details two-dimensional transient computations of decelerating flows where the inertial number tends to zero, high-speed flows that have large inertial numbers, and flows which develop into granular rollwaves. This is the first time that granular rollwaves have been simulated in two dimensions, which represents a major step towards the simulation of other complex granular flows.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


Sign in / Sign up

Export Citation Format

Share Document