Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array

2021 ◽  
Vol 931 ◽  
Author(s):  
M.X. Tang ◽  
Y. Wu ◽  
H.H. Zong ◽  
Y.H. Luo ◽  
H.S. Yang ◽  
...  

In this paper, a pulsed spark discharge plasma actuator array is deployed to control laminar–turbulent transition in a Mach 3.0 flat-plate boundary layer, and the subtle flow structures are visualized by nanoparticle planar laser scattering (NPLS) technique. Results show that the onset location of turbulence can be brought upstream by plasma actuation, corresponding to forced boundary-layer transition. Hairpin vortex packets evolved from the thermal bulbs play a vital role in the breakdown of laminar flow. With the help of a machine learning tool, all the relevant structures induced by plasma actuation are extracted from NPLS images, and a conceptual model of the hairpin vortex generation is proposed, including three stages: production and lift-up of the high-vorticity region, formation of the $\varLambda$ vortex and evolution of the hairpin vortex.

2016 ◽  
Vol 792 ◽  
pp. 274-306 ◽  
Author(s):  
Guo-Sheng He ◽  
Chong Pan ◽  
Li-Hao Feng ◽  
Qi Gao ◽  
Jin-Jun Wang

Evolution of Lagrangian coherent structures (LCS) in a flat plate boundary layer transition induced by the wake of a circular cylinder is investigated. Both hydrogen bubble visualization and particle image velocimetry (PIV) techniques are used. It is found that downstream of the cylinder, the disturbance in the boundary layer experiences a fast growth followed by a slow decay in the transition. Lagrangian coherent structures are revealed by qualitative hydrogen bubble visualizations and quantitative finite-time Lyapunov exponents (FTLE) fields derived from the PIV data. The evolution of the LCS is considered from the very beginning of the transition up to when the boundary layer becomes fully developed turbulent flow. The mean convection velocity and average inclination angle of the LCS are first extracted from the FTLE fields. The streamwise length of the low-speed streaks seems to increase, while their spanwise distance decreases in the boundary layer transition. Proper orthogonal decomposition (POD) of the PIV data shows that low-speed streaks associated with the hairpin vortices and hairpin packets are the dominant coherent structures close to the wall in the transitional and turbulent boundary layer. The POD modes also reveal a variety of scales in the turbulent boundary layer. Moreover, it is found that large-scale coherent structures can modulate the amplitude of the small-scale ones.


Sign in / Sign up

Export Citation Format

Share Document