flat plate boundary layer
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 36)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 13 (2) ◽  
pp. 68-78
Author(s):  
عباس فاضل محمود ◽  

This paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles. The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into account the interference between two pairs of VGs. The effect of the changing in (h- the height of vortex generator, d- the average distance between tow vortex generators) on the thickness of the flat plate boundary layer and the drag coefficients has been studied for triangular vortex generator. The measurements of the vortex generator have been changed to determine the optimum boundary layer thickness and the change in drag coefficients. An experiment was done at an average free stream velocity, (U∞,) of 28 m/s. The experiment was conducted in the wind tunnel UTAD-2 University (NAU) Kiev, Ukraine.


2021 ◽  
Vol 33 (11) ◽  
pp. 114101
Author(s):  
Shyam Sunder Gopalakrishnan ◽  
Alakesh Chandra Mandal

2021 ◽  
Vol 920 ◽  
Author(s):  
Dhamotharan Veerasamy ◽  
Chris J. Atkin ◽  
Sathiskumar A. Ponnusami

Abstract


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2147
Author(s):  
Juan Ángel Martín ◽  
Pedro Paredes

Modulating the boundary layer velocity profile is a very promising strategy for achieving transition delay and reducing the friction of the plate. By perturbing the flow with counter-rotating vortices that undergo transient, non-modal growth, streamwise-aligned streaks are formed inside the boundary layer, which have been proved (theoretical and experimentally) to be very robust flow structures. In this paper, we employ efficient numerical methods to perform a parametric stability investigation of the three-dimensional incompressible flat-plate boundary layer with finite-amplitude streaks. For this purpose, the Boundary Region Equations (BREs) are applied to solve the nonlinear downstream evolution of finite amplitude streaks. Regarding the stability analysis, the linear three-dimensional plane-marching Parabolized Stability Equations (PSEs) concept constitutes the best candidate for this task. Therefore, a thorough parametric study is presented, analyzing the instability characteristics with respect to critical conditions of the modified incompressible zero-pressure-gradient flat-plate boundary layer, by means of finite-amplitude linearly optimal and suboptimal disturbances or streaks. The parameter space is extended from low- to high- amplitude streaks, accurately documenting the transition delay for low-amplitude streaks and the amplitude threshold for streak shear layer instability or bypass transition, which drastically displaces the transition front upstream.


2021 ◽  
Author(s):  
Joshua M. Weisberger ◽  
Brett F. Bathel ◽  
Gregory C. Herring ◽  
Gregory M. Buck ◽  
Stephen B. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document