scholarly journals On maxima of stationary fields

2019 ◽  
Vol 56 (4) ◽  
pp. 1217-1230
Author(s):  
N. Soja-Kukieła

AbstractLet $\{X_{\textbf{n}} \colon \textbf{n}\in{\mathbb Z}^d\}$ be a weakly dependent stationary random field with maxima $M_{A} :=, \sup\{X_{\textbf{i}} \colon \textbf{i}\in A\}$ for finite $A\subset{\mathbb Z}^d$ and $M_{\textbf{n}} := \sup\{X_{\textbf{i}} \colon \mathbf{1} \leq \textbf{i} \leq \textbf{n} \}$ for $\textbf{n}\in{\mathbb N}^d$ . In a general setting we prove that ${\mathbb{P}}(M_{(N_1(n),N_2(n),\ldots, N_d(n))} \leq v_n)$ $= \exp(\!- n^d {\mathbb{P}}(X_{\mathbf{0}} > v_n , M_{A_n} \leq v_n)) + {\text{o}}(1)$ for some increasing sequence of sets $A_n$ of size $ {\text{o}}(n^d)$ , where $(N_1(n),N_2(n), \ldots,N_d(n))\to(\infty,\infty, \ldots, \infty)$ and $N_1(n)N_2(n)\cdots N_d(n)\sim n^d$ . The sets $A_n$ are determined by a translation-invariant total order $\preccurlyeq$ on ${\mathbb Z}^d$ . For a class of fields satisfying a local mixing condition, including m-dependent ones, the main theorem holds with a constant finite A replacing $A_n$ . The above results lead to new formulas for the extremal index for random fields. The new method for calculating limiting probabilities for maxima is compared with some known results and applied to the moving maximum field.

2006 ◽  
Vol 43 (01) ◽  
pp. 114-126
Author(s):  
K. F. Turkman

Let {X( s , t), s = (s 1, s 2) ∈ ℝ2, t ∈ ℝ} be a stationary random field defined over a discrete lattice. In this paper, we consider a set of domain of attraction criteria giving the notion of extremal index for random fields. Together with the extremal-types theorem given by Leadbetter and Rootzen (1997), this will give a characterization of the limiting distribution of the maximum of such random fields.


2006 ◽  
Vol 43 (1) ◽  
pp. 114-126 ◽  
Author(s):  
K. F. Turkman

Let {X(s, t), s = (s1, s2) ∈ ℝ2, t ∈ ℝ} be a stationary random field defined over a discrete lattice. In this paper, we consider a set of domain of attraction criteria giving the notion of extremal index for random fields. Together with the extremal-types theorem given by Leadbetter and Rootzen (1997), this will give a characterization of the limiting distribution of the maximum of such random fields.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 212
Author(s):  
José G. Gómez-García ◽  
Christophe Chesneau

In this paper, we provide a central limit theorem for the finite-dimensional marginal distributions of empirical processes (Zn(f))f∈F whose index set F is a family of cluster functionals valued on blocks of values of a stationary random field. The practicality and applicability of the result depend mainly on the usual Lindeberg condition and on a sequence Tn which summarizes the dependence between the blocks of the random field values. Finally, in application, we use the previous result in order to show the Gaussian asymptotic behavior of the proposed iso-extremogram estimator.


2011 ◽  
Vol 25 (01) ◽  
pp. 143-151 ◽  
Author(s):  
WEN-MING HE ◽  
XIAO-FEI GUAN ◽  
XIN-JUN ZHANG

In this paper, we discuss the problem of heat exchange in a composite plane wall whose heat transmitting coefficient is a stationary random field. We present a method of multiscale asymptotic expansions and the corresponding finite element method to solve the problem.


2018 ◽  
Vol 50 (3) ◽  
pp. 706-725
Author(s):  
Julie Fournier

Abstract A deterministic application θ:ℝ2→ℝ2 deforms bijectively and regularly the plane and allows the construction of a deformed random field X∘θ:ℝ2→ℝ from a regular, stationary, and isotropic random field X:ℝ2→ℝ. The deformed field X∘θ is, in general, not isotropic (and not even stationary), however, we provide an explicit characterization of the deformations θ that preserve the isotropy. Further assuming that X is Gaussian, we introduce a weak form of isotropy of the field X∘θ, defined by an invariance property of the mean Euler characteristic of some of its excursion sets. We prove that deformed fields satisfying this property are strictly isotropic. In addition, we are able to identify θ, assuming that the mean Euler characteristic of excursion sets of X∘θ over some basic domain is known.


2017 ◽  
Vol 54 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Anders Rønn-Nielsen ◽  
Eva B. Vedel Jensen

Abstract We consider a continuous, infinitely divisible random field in ℝd, d = 1, 2, 3, given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields, we compute the asymptotic probability that the excursion set at level x contains some rotation of an object with fixed radius as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.


Sign in / Sign up

Export Citation Format

Share Document