scholarly journals Excursion sets of infinitely divisible random fields with convolution equivalent Lévy measure

2017 ◽  
Vol 54 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Anders Rønn-Nielsen ◽  
Eva B. Vedel Jensen

Abstract We consider a continuous, infinitely divisible random field in ℝd, d = 1, 2, 3, given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields, we compute the asymptotic probability that the excursion set at level x contains some rotation of an object with fixed radius as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.

2016 ◽  
Vol 53 (1) ◽  
pp. 244-261 ◽  
Author(s):  
Anders Rønn-Nielsen ◽  
Eva B. Vedel Jensen

Abstract We consider a continuous, infinitely divisible random field in Rd given as an integral of a kernel function with respect to a Lévy basis with convolution equivalent Lévy measure. For a large class of such random fields we compute the asymptotic probability that the supremum of the field exceeds the level x as x → ∞. Our main result is that the asymptotic probability is equivalent to the right tail of the underlying Lévy measure.


2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


2018 ◽  
Vol 50 (3) ◽  
pp. 706-725
Author(s):  
Julie Fournier

Abstract A deterministic application θ:ℝ2→ℝ2 deforms bijectively and regularly the plane and allows the construction of a deformed random field X∘θ:ℝ2→ℝ from a regular, stationary, and isotropic random field X:ℝ2→ℝ. The deformed field X∘θ is, in general, not isotropic (and not even stationary), however, we provide an explicit characterization of the deformations θ that preserve the isotropy. Further assuming that X is Gaussian, we introduce a weak form of isotropy of the field X∘θ, defined by an invariance property of the mean Euler characteristic of some of its excursion sets. We prove that deformed fields satisfying this property are strictly isotropic. In addition, we are able to identify θ, assuming that the mean Euler characteristic of excursion sets of X∘θ over some basic domain is known.


1995 ◽  
Vol 27 (4) ◽  
pp. 943-959 ◽  
Author(s):  
K. J. Worsley

Certain images arising in astrophysics and medicine are modelled as smooth random fields inside a fixed region, and experimenters are interested in the number of ‘peaks', or more generally, the topological structure of ‘hot-spots' present in such an image. This paper studies the Euler characteristic of the excursion set of a random field; the excursion set is the set of points where the image exceeds a fixed threshold, and the Euler characteristic counts the number of connected components in the excursion set minus the number of ‘holes'. For high thresholds the Euler characteristic is a measure of the number of peaks. The geometry of excursion sets has been studied by Adler (1981) who gives the expectation of two excursion set characteristics, called the DT (differential topology) and IG (integral geometry) characteristics, which equal the Euler characteristic provided the excursion set does not touch the boundary of the region. Worsley (1995) finds a boundary correction which gives the expectation of the Euler characteristic itself in two and three dimensions. The proof uses a representation of the Euler characteristic given by Hadwiger (1959). The purpose of this paper is to give a general result for any number of dimensions. The proof takes a different approach and uses a representation from Morse theory. Results are applied to the recently discovered anomalies in the cosmic microwave background radiation, thought to be the remnants of the creation of the universe.


1976 ◽  
Vol 13 (2) ◽  
pp. 276-289 ◽  
Author(s):  
Robert J. Adler

For an n-dimensional random field X(t) we define the excursion set A of X(t) by A = [t ∊ S: X(t) ≧ u] for real u and compact S ⊂ Rn. We obtain a generalisation of the number of upcrossings of a one-dimensional stochastic process to random fields via a characteristic of the set A related to the Euler characteristic of differential topology. When X(t) is a homogeneous Gaussian field satisfying certain regularity conditions we obtain an explicit formula for the mean value of this characteristic.


2013 ◽  
Vol 41 (1) ◽  
pp. 134-169 ◽  
Author(s):  
Robert J. Adler ◽  
Gennady Samorodnitsky ◽  
Jonathan E. Taylor

1976 ◽  
Vol 13 (02) ◽  
pp. 276-289 ◽  
Author(s):  
Robert J. Adler

For an n-dimensional random field X(t) we define the excursion set A of X(t) by A = [t ∊ S: X(t) ≧ u] for real u and compact S ⊂ Rn. We obtain a generalisation of the number of upcrossings of a one-dimensional stochastic process to random fields via a characteristic of the set A related to the Euler characteristic of differential topology. When X(t) is a homogeneous Gaussian field satisfying certain regularity conditions we obtain an explicit formula for the mean value of this characteristic.


1995 ◽  
Vol 27 (04) ◽  
pp. 943-959 ◽  
Author(s):  
K. J. Worsley

Certain images arising in astrophysics and medicine are modelled as smooth random fields inside a fixed region, and experimenters are interested in the number of ‘peaks', or more generally, the topological structure of ‘hot-spots' present in such an image. This paper studies the Euler characteristic of the excursion set of a random field; the excursion set is the set of points where the image exceeds a fixed threshold, and the Euler characteristic counts the number of connected components in the excursion set minus the number of ‘holes'. For high thresholds the Euler characteristic is a measure of the number of peaks. The geometry of excursion sets has been studied by Adler (1981) who gives the expectation of two excursion set characteristics, called the DT (differential topology) and IG (integral geometry) characteristics, which equal the Euler characteristic provided the excursion set does not touch the boundary of the region. Worsley (1995) finds a boundary correction which gives the expectation of the Euler characteristic itself in two and three dimensions. The proof uses a representation of the Euler characteristic given by Hadwiger (1959). The purpose of this paper is to give a general result for any number of dimensions. The proof takes a different approach and uses a representation from Morse theory. Results are applied to the recently discovered anomalies in the cosmic microwave background radiation, thought to be the remnants of the creation of the universe.


2016 ◽  
Vol 48 (3) ◽  
pp. 712-725 ◽  
Author(s):  
Marie Kratz ◽  
Werner Nagel

Abstract When a random field (Xt,t∈ℝ2) is thresholded on a given level u, the excursion set is given by its indicator 1[u, ∞)(Xt). The purpose of this work is to study functionals (as established in stochastic geometry) of these random excursion sets as, e.g. the capacity functional as well as the second moment measure of the boundary length. It extends results obtained for the one-dimensional case to the two-dimensional case, with tools borrowed from crossings theory, in particular, Rice methods, and from integral and stochastic geometry.


2016 ◽  
Vol 44 (1) ◽  
pp. 521-543 ◽  
Author(s):  
Hermine Biermé ◽  
Agnès Desolneux

Sign in / Sign up

Export Citation Format

Share Document