scholarly journals Non-Comparability with respect to the convex transform order with applications

2020 ◽  
Vol 57 (4) ◽  
pp. 1339-1348
Author(s):  
Idir Arab ◽  
Milto Hadjikyriakou ◽  
Paulo Eduardo Oliveira

AbstractIn the literature of stochastic orders, one rarely finds results characterizing non-comparability of random variables. We prove simple tools implying the non-comparability with respect to the convex transform order. The criteria are used, among other applications, to provide a negative answer for a conjecture about comparability in a much broader scope than its initial statement.

2018 ◽  
Vol 55 (1) ◽  
pp. 216-232 ◽  
Author(s):  
Narayanaswamy Balakrishnan ◽  
Ghobad Barmalzan ◽  
Abedin Haidari

Abstract In this paper we prove that a parallel system consisting of Weibull components with different scale parameters ages faster than a parallel system comprising Weibull components with equal scale parameters in the convex transform order when the lifetimes of components of both systems have different shape parameters satisfying some restriction. Moreover, while comparing these two systems, we show that the dispersive and the usual stochastic orders, and the right-spread order and the increasing convex order are equivalent. Further, some of the known results in the literature concerning comparisons of k-out-of-n systems in the exponential model are extended to the Weibull model. We also provide solutions to two open problems mentioned by Balakrishnan and Zhao (2013) and Zhao et al. (2016).


2012 ◽  
Vol 26 (3) ◽  
pp. 393-404 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

In this paper, a new sufficient condition for comparing linear combinations of independent gamma random variables according to star ordering is given. This unifies some of the newly proved results on this problem. Equivalent characterizations between various stochastic orders are established by utilizing the new condition. The main results in this paper generalize and unify several results in the literature including those of Amiri, Khaledi, and Samaniego [2], Zhao [18], and Kochar and Xu [9].


2021 ◽  
Vol 29 (1) ◽  
pp. 53-69
Author(s):  
Luigi-Ionut Catana

Abstract In this article we give some theoretical results for equivalence between different stochastic orders of some kind multivariate Pareto distribution family. Weak multivariate orders are equivalent or imply different stochastic orders between extremal statistics order of two random variables sequences. The random variables in this article are not neccesary independent.


2006 ◽  
Vol 20 (4) ◽  
pp. 655-666 ◽  
Author(s):  
Jarosław Bartoszewicz ◽  
Magdalena Skolimowska

Recently, Bartoszewicz [5,6] considered mixtures of exponential distributions treated as the Laplace transforms of mixing distributions and established some stochastic order relations between them: star order, dispersive order, dilation. In this article the preservation of the likelihood ratio, hazard rate, reversed hazard rate, mean residual life, and excess wealth orders under exponential mixtures is studied. Some new preservation results for the dispersive order are given, as well as the preservation of the convex transform order, and the star one is discussed.


2002 ◽  
Vol 34 (04) ◽  
pp. 826-845 ◽  
Author(s):  
Subhash C. Kochar ◽  
Xiaohu Li ◽  
Moshe Shaked

For nonnegative random variables X and Y we write X ≤TTT Y if ∫0 F -1(p)(1-F(x))dx ≤ ∫0 G -1(p)(1-G(x))dx all p ∈ (0,1), where F and G denote the distribution functions of X and Y respectively. The purpose of this article is to study some properties of this new stochastic order. New properties of the excess wealth (or right-spread) order, and of other related stochastic orders, are also obtained. Applications in the statistical theory of reliability and in economics are included.


2015 ◽  
Vol 52 (04) ◽  
pp. 1156-1174 ◽  
Author(s):  
Antonio Di Crescenzo ◽  
Abdolsaeed Toomaj

Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazard rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazard rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving ageing notions and stochastic orders. We also exploit the connection of such a sequence to the cumulative entropy and to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing the mean and the cumulative entropy of the random variables of the sequence are finally investigated.


2015 ◽  
Vol 52 (4) ◽  
pp. 1156-1174 ◽  
Author(s):  
Antonio Di Crescenzo ◽  
Abdolsaeed Toomaj

Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazard rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazard rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving ageing notions and stochastic orders. We also exploit the connection of such a sequence to the cumulative entropy and to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing the mean and the cumulative entropy of the random variables of the sequence are finally investigated.


2006 ◽  
Vol 43 (03) ◽  
pp. 704-712 ◽  
Author(s):  
Jesús de la Cal ◽  
Javier Cárcamo

We characterize the (continuous) majorization of integrable functions introduced by Hardy, Littlewood, and Pólya in terms of the (discrete) majorization of finite-dimensional vectors, introduced by the same authors. The most interesting version of this result is the characterization of the (increasing) convex order for integrable random variables in terms of majorization of vectors of expected order statistics. Such a result includes, as particular cases, previous results by Barlow and Proschan and by Alzaid and Proschan, and, in a sense, completes the picture of known results on order statistics. Applications to other stochastic orders are also briefly considered.


Sign in / Sign up

Export Citation Format

Share Document