On stochastic comparisons of k-out-of-n systems with Weibull components

2018 ◽  
Vol 55 (1) ◽  
pp. 216-232 ◽  
Author(s):  
Narayanaswamy Balakrishnan ◽  
Ghobad Barmalzan ◽  
Abedin Haidari

Abstract In this paper we prove that a parallel system consisting of Weibull components with different scale parameters ages faster than a parallel system comprising Weibull components with equal scale parameters in the convex transform order when the lifetimes of components of both systems have different shape parameters satisfying some restriction. Moreover, while comparing these two systems, we show that the dispersive and the usual stochastic orders, and the right-spread order and the increasing convex order are equivalent. Further, some of the known results in the literature concerning comparisons of k-out-of-n systems in the exponential model are extended to the Weibull model. We also provide solutions to two open problems mentioned by Balakrishnan and Zhao (2013) and Zhao et al. (2016).

2009 ◽  
Vol 46 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

A parallel system with heterogeneous exponential component lifetimes is shown to be more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. As a consequence, equivalent conditions for comparing the variabilities of the largest order statistics from heterogeneous and homogeneous exponential samples in the sense of the dispersive order and the right-spread order are established. A sufficient condition is also given for the proportional hazard rate model.


2009 ◽  
Vol 46 (02) ◽  
pp. 342-352 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

A parallel system with heterogeneous exponential component lifetimes is shown to be more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. As a consequence, equivalent conditions for comparing the variabilities of the largest order statistics from heterogeneous and homogeneous exponential samples in the sense of the dispersive order and the right-spread order are established. A sufficient condition is also given for the proportional hazard rate model.


2003 ◽  
Vol 17 (3) ◽  
pp. 305-334 ◽  
Author(s):  
Félix Belzunce ◽  
Taizhong Hu ◽  
Baha-Eldin Khaledi

Dispersion-type orders are introduced and studied. The new orders can be used to compare the variability of the underlying random variables, among which are the usual dispersive order and the right spread order. Connections among the new orders and other common stochastic orders are examined and investigated. Some closure properties of the new orders under the operation of order statistics, transformations, and mixtures are derived. Finally, several applications of the new orders are given.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 662
Author(s):  
Mateu Sbert ◽  
Jordi Poch ◽  
Shuning Chen ◽  
Víctor Elvira

In this paper, we present order invariance theoretical results for weighted quasi-arithmetic means of a monotonic series of numbers. The quasi-arithmetic mean, or Kolmogorov–Nagumo mean, generalizes the classical mean and appears in many disciplines, from information theory to physics, from economics to traffic flow. Stochastic orders are defined on weights (or equivalently, discrete probability distributions). They were introduced to study risk in economics and decision theory, and recently have found utility in Monte Carlo techniques and in image processing. We show in this paper that, if two distributions of weights are ordered under first stochastic order, then for any monotonic series of numbers their weighted quasi-arithmetic means share the same order. This means for instance that arithmetic and harmonic mean for two different distributions of weights always have to be aligned if the weights are stochastically ordered, this is, either both means increase or both decrease. We explore the invariance properties when convex (concave) functions define both the quasi-arithmetic mean and the series of numbers, we show its relationship with increasing concave order and increasing convex order, and we observe the important role played by a new defined mirror property of stochastic orders. We also give some applications to entropy and cross-entropy and present an example of multiple importance sampling Monte Carlo technique that illustrates the usefulness and transversality of our approach. Invariance theorems are useful when a system is represented by a set of quasi-arithmetic means and we want to change the distribution of weights so that all means evolve in the same direction.


2007 ◽  
Vol 7 (4) ◽  
pp. 321-340
Author(s):  
A. Masjukov

AbstractFor bivariate and trivariate interpolation we propose in this paper a set of integrable radial basis functions (RBFs). These RBFs are found as fundamental solutions of appropriate PDEs and they are optimal in a special sense. The condition number of the interpolation matrices as well as the order of convergence of the inter- polation are estimated. Moreover, the proposed RBFs provide smooth approximations and approximate fulfillment of the interpolation conditions. This property allows us to avoid the undecidable problem of choosing the right scale parameter for the RBFs. Instead we propose an iterative procedure in which a sequence of improving approx- imations is obtained by means of a decreasing sequence of scale parameters in an a priori given range. The paper provides a few clear examples of the advantage of the proposed interpolation method.


2015 ◽  
Vol 52 (01) ◽  
pp. 102-116 ◽  
Author(s):  
Nuria Torrado ◽  
Subhash C. Kochar

Let X λ1 , X λ2 , …, X λ n be independent Weibull random variables with X λ i ∼ W(α, λ i ), where λ i > 0 for i = 1, …, n. Let X n:n λ denote the lifetime of the parallel system formed from X λ1 , X λ2 , …, X λ n . We investigate the effect of the changes in the scale parameters (λ1, …, λ n ) on the magnitude of X n:n λ according to reverse hazard rate and likelihood ratio orderings.


2020 ◽  
Vol 57 (4) ◽  
pp. 1339-1348
Author(s):  
Idir Arab ◽  
Milto Hadjikyriakou ◽  
Paulo Eduardo Oliveira

AbstractIn the literature of stochastic orders, one rarely finds results characterizing non-comparability of random variables. We prove simple tools implying the non-comparability with respect to the convex transform order. The criteria are used, among other applications, to provide a negative answer for a conjecture about comparability in a much broader scope than its initial statement.


2006 ◽  
Vol 20 (4) ◽  
pp. 655-666 ◽  
Author(s):  
Jarosław Bartoszewicz ◽  
Magdalena Skolimowska

Recently, Bartoszewicz [5,6] considered mixtures of exponential distributions treated as the Laplace transforms of mixing distributions and established some stochastic order relations between them: star order, dispersive order, dilation. In this article the preservation of the likelihood ratio, hazard rate, reversed hazard rate, mean residual life, and excess wealth orders under exponential mixtures is studied. Some new preservation results for the dispersive order are given, as well as the preservation of the convex transform order, and the star one is discussed.


2011 ◽  
Vol 48 (01) ◽  
pp. 271-284 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

Kochar and Xu (2009) proved that a parallel system with heterogeneous exponential component lifetimes is more skewed (according to the convex transform order) than the system with independent and identically distributed exponential components. In this paper we extend this study to the generalk-out-of-nsystems for the case when there are only two types of component in the system. An open problem proposed in Pǎltǎnea (2008) is partially solved.


Sign in / Sign up

Export Citation Format

Share Document