scholarly journals New insights into the late Middle Stone Age occupation of Oued el Akarit, southern Tunisia

2021 ◽  
pp. 1-24
Author(s):  
R.N.E. Barton ◽  
L. Belhouchet ◽  
S.N. Collcutt ◽  
N. Aouadi ◽  
P.G. Albert ◽  
...  

Abstract This article reports on a new project to investigate the activities of early Homo sapiens in the area of the Chotts ‘megalake’ in southern Tunisia. Excavations in 2015 and 2019 at Oued el Akarit revealed one of a number of Middle Stone Age (MSA) horizons near the top of a long sequence of Upper Pleistocene deposits. The site identified as Oued el Akarit (Sondage 8) consists of lithic artefacts, bone fragments of large ungulates and pieces of ostrich eggshell. Many of the objects are burnt. Excavation of about nine square metres revealed that these were associated with a lightly trampled and combusted occupation surface. Amongst the identified artefacts were Levallois flakes some of which could be refitted, thereby indicating the generally undisturbed nature of the occupation. The lithic finds also included side scrapers and other tools diagnostic of the MSA but significantly no bifacial or tanged tools. OSL (Optically Stimulated Luminescence) dating of the sediments and AMS (Accelerator Mass Spectrometry) radiocarbon dating of ostrich eggshell have produced uncalibrated age determinations in the range 37,000–40,000 years ago, one of the youngest ages for MSA sites in the region. This is the first example of a securely dated later MSA occupation in a riparian environment in south-eastern Tunisia.

2001 ◽  
Vol 55 (3) ◽  
pp. 293-302 ◽  
Author(s):  
Andrew H. Ivester ◽  
David S. Leigh ◽  
D. I. Godfrey-Smith

AbstractMost inland eolian dunes associated with rivers on the Georgia Coastal Plain probably date to glacial periods. Direct dating of the dune sand by optically stimulated luminescence dating, combined with limiting ages from radiocarbon dating, shows that dunes formed during isotope stage 2, stage 3, the transition between stages 4 and 5, and isotope stage 6 or earlier. Most of the dates indicate dune activity between 30,000 and 15,000 years ago. Holocene activity included limited and local reworking of the crests of some thick dunes along streams that flow from the Piedmont.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Andrew Murray ◽  
Lee J. Arnold ◽  
Jan-Pieter Buylaert ◽  
Guillaume Guérin ◽  
Jintang Qin ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuqiu Zhao ◽  
Djordje Grujic ◽  
Santanu Baruah ◽  
Dawchu Drukpa ◽  
Joanne Elkadi ◽  
...  

The 1714 Bhutan earthquake was one of the largest in the Himalaya in the last millennium. We show that the surface rupture caused by this earthquake extended further to the east than previously known, it was at least 175 km long, with slip exceeding 11 m at our study site. The age of the surface rupture was constrained by a combination of radiocarbon and traditional optically stimulated luminescence dating of affected river sediments. Computations using empirical scaling relationships, fitting historical observations and paleoseismic data, yielded a plausible magnitude of Mw 8.1 ± 0.4 and placed the hypocentre of the 1714 Bhutan earthquake on the flat segment of the Main Himalayan Thrust (MHT), the basal décollement of the Himalayan orogen. Calculations of Coulomb stress transfer indicate that great earthquakes along the leading part of the MHT would cause surface rupture. In contrast, distal earthquakes may not immediately trigger surface rupture, although they would increase the stresses in the leading part of the MHT, facilitating future surface-rupturing earthquakes. Frontal earthquakes would also transfer stress into the modern foreland basin facilitating southward propagation of the MHT as a blind basal décollement. In conclusion, studies of surface-rupturing events alone likely underestimate the seismic slip along the Himalayan megathrust.


2019 ◽  
Vol 22 ◽  
pp. 107
Author(s):  
L. M. Tsodoulos ◽  
K. Stamoulis ◽  
C. A. Papachristodoulou ◽  
K. G. Ioannides ◽  
S. Pavlides

We have investigated the application of luminescence dating to sediment and pottery samples from a paleoseismological trench excavated in the Gyrtoni Fault, Tyrnavos Basin, Central Greece. The samples were dated following the optically stimulated luminescence (OSL) dating method, using the Riso TL/OSL DA-20 reader. The OSL ages were obtained from chemically purified quartz and a single-aliquot regenerative-dose (SAR) protocol was followed for the equivalent dose (De) determination. Additionally, samples were collected and analyzed with the method of X-ray Fluorescence (XRF) spectrometry, in order to assess their elemental composition. Radioisotope sources (109Cd and 241Am) were used for sample excitation, while X-ray spectra were acquired using a Si(Li) detector coupled with standard electronics. The XRF data were submitted to principal component analysis (PCA). This statistical handling aimed to distinguish from which part of the upthrown fault block scarp-derived colluvium and alluvial deposits, parts of the downthrown block were derived and thus estimate the displacement. The results indicated that both the OSL dating method and the XRF analysis combined with PCA can serve as useful tools for paleoseismological investigations.


Sign in / Sign up

Export Citation Format

Share Document