scholarly journals Optimal control of queueing networks: an approach via fluid models

2002 ◽  
Vol 34 (02) ◽  
pp. 313-328
Author(s):  
Nicole Bäuerle

We consider a general control problem for networks with linear dynamics which includes the special cases of scheduling in multiclass queueing networks and routeing problems. The fluid approximation of the network is used to derive new results about the optimal control for the stochastic network. The main emphasis lies on the average-cost criterion; however, the β-discounted as well as the finite-cost problems are also investigated. One of our main results states that the fluid problem provides a lower bound to the stochastic network problem. For scheduling problems in multiclass queueing networks we show the existence of an average-cost optimal decision rule, if the usual traffic conditions are satisfied. Moreover, we give under the same conditions a simple stabilizing scheduling policy. Another important issue that we address is the construction of simple asymptotically optimal decision rules. Asymptotic optimality is here seen with respect to fluid scaling. We show that every minimizer of the optimality equation is asymptotically optimal and, what is more important for practical purposes, we outline a general way to identify fluid optimal feedback rules as asymptotically optimal. Last, but not least, for routeing problems an asymptotically optimal decision rule is given explicitly, namely a so-called least-loaded-routeing rule.

2002 ◽  
Vol 34 (2) ◽  
pp. 313-328 ◽  
Author(s):  
Nicole Bäuerle

We consider a general control problem for networks with linear dynamics which includes the special cases of scheduling in multiclass queueing networks and routeing problems. The fluid approximation of the network is used to derive new results about the optimal control for the stochastic network. The main emphasis lies on the average-cost criterion; however, the β-discounted as well as the finite-cost problems are also investigated. One of our main results states that the fluid problem provides a lower bound to the stochastic network problem. For scheduling problems in multiclass queueing networks we show the existence of an average-cost optimal decision rule, if the usual traffic conditions are satisfied. Moreover, we give under the same conditions a simple stabilizing scheduling policy. Another important issue that we address is the construction of simple asymptotically optimal decision rules. Asymptotic optimality is here seen with respect to fluid scaling. We show that every minimizer of the optimality equation is asymptotically optimal and, what is more important for practical purposes, we outline a general way to identify fluid optimal feedback rules as asymptotically optimal. Last, but not least, for routeing problems an asymptotically optimal decision rule is given explicitly, namely a so-called least-loaded-routeing rule.


2014 ◽  
Vol 3 (1) ◽  
pp. 1-15
Author(s):  
Iraklis Kollias

This paper utilizes the baseline Real Business Cycle (RBC) model in order to construct a time recursive approximate optimal decision rule as a linear function of the model's state variables and an exogenous surprise shock that hits the economy. The constructed rule is subsequently used in order to examine and compare the dynamics of the capital stock and random total factor productivity (TFP). For this purpose, an open-loop control system is analyzed and compared with the closed-loop control system which results from the application of the time recursive approximate optimal decision rule. A set of optimal control indicators is proposed in order to evaluate the effects resulting from the application of this rule on the behavior of the open-loop control system. The results obtained show a significant reduction in the volatility of the capital stock when the constructed approximate optimal decision rule is applied to the open-loop control system.


Sign in / Sign up

Export Citation Format

Share Document