loop control system
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 98)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jaemin Lee ◽  
Junhyeok Ahn ◽  
Donghyun Kim ◽  
Seung Hyeon Bang ◽  
Luis Sentis

This paper proposes an online gain adaptation approach to enhance the robustness of whole-body control (WBC) framework for legged robots under unknown external force disturbances. Without properly accounting for external forces, the closed-loop control system incorporating WBC may become unstable, and therefore the desired task goals may not be achievable. To study the effects of external disturbances, we analyze the behavior of our current WBC framework via the use of both full-body and centroidal dynamics. In turn, we propose a way to adapt feedback gains for stabilizing the controlled system automatically. Based on model approximations and stability theory, we propose three conditions to ensure that the adjusted gains are suitable for stabilizing a robot under WBC. The proposed approach has four contributions. We make it possible to estimate the unknown disturbances without force/torque sensors. We then compute adaptive gains based on theoretic stability analysis incorporating the unknown forces at the joint actuation level. We demonstrate that the proposed method reduces task tracking errors under the effect of external forces on the robot. In addition, the proposed method is easy-to-use without further modifications of the controllers and task specifications. The resulting gain adaptation process is able to run in real-time. Finally, we verify the effectiveness of our method both in simulations and experiments using the bipedal robot Draco2 and the humanoid robot Valkyrie.


Author(s):  
Jaime Rosales-Davalos ◽  
Ma. de los Ángeles Enríquez-Pérez ◽  
Roberto López-Ramírez ◽  
Jorge Edmundo Mastache-Mastache

The objective of this research consists of the design, construction and automation of the electrospinning mechatronic system to obtain nanofibers. As a first stage, the structure of the electrospinning mechatronic system and the distribution, injection and manifold system were designed and built. In the second stage, the open-loop control system was outlined and implemented. It is made up of: control, isolation stage, and the plant. In the first element, the LabView interface and ATMega2560 microcontroller were used to manipulate the variables of the injection speed and distribution of the solution, the speed of the nanofiber collector and the height between the capillary tube and the collector, the magnitude of the temperature and humidity from the environment, also, the graphic interface was developed, the second element consists of isolating the control and power stage in addition to amplifying the command signals and enabling the correction elements, the third element receiving the signals from the power stage to perform the action and produce a change in the controlled variables in the process. With this prototype, it is intended to obtain nanofibers from different polymer solutions for use in the area of catalysis and biomaterials.


Author(s):  
Dr. T. Murali Mohan

Abstract: A new multi-input multi-output dc-dc converter with high step-up capability for wide power ranges is proposed in this paper. The converter's number of inputs and outputs is arbitrary and independent of each other. The proposed topology combines the benefits of DC-DC boost and switched-capacitor converters. The number of input, output, and voltage multiplier stages is arbitrary and depends on the design conditions. First, the various operating modes of the proposed converter are discussed. The closed-loop control system also must be designed using state space representation and small-signal modelling. Finally, the operation of the proposed converter is derived from the simulation results. Keywords: High power converter, Low voltage stress, Multi-Input Multi-Output (MIMO) converter, Non-isolated high step-up dc-dc converter, closed loop control.


2021 ◽  
Author(s):  
◽  
Jason Long

<p>A closed-loop control system is any configuration that feeds information about its output back into the control stream. These types of systems have been in use for hundreds of years in various engineering related disciplines to carry out operations such as keeping rooms at the correct temperature, implementing cruise control in cars, and precisely positioning industrial machinery. When a musician performs a piece, a type of biological closed loop is invoked in which the player continuously listens to the sound of their instrument, and adjusts their actions in order to ensure their performance is as desired.  However, most musical robots do not possess this ability, instead relying on open-loop systems without feedback. This results in the need for much manual intervention from the operators of these robots, unintuitive control interfaces for composing and performing music with them, and tuning, timing, dynamics and other issues occurring during performances.  This thesis investigates applying closed-loop audio feedback techniques to the creation of musical robots to equip them with new expressive capabilities, interactive applications, musical accuracy, and greater autonomy. In order to realise these objectives, following an investigation of the history of musical automata and musical robotic control systems, several new robotic musical instruments are developed based on the principals of utilising embedded musical information retrieval techniques to allow the instruments to continuously ‘listen’ to themselves while they play.  The mechanical and electronic systems and firmware of a closed-loop glockenspiel, a modular unpitched percussion control system, and a robotic chordophone control system are described in detail, utilising new software and hardware created to be accessible to electronic artists. The novel capabilities of the instruments are demonstrated both through quantitative evaluations of the performance of their subsystems, and through composing original musical works specifically for the instruments. This paradigm shift in musical robotic construction paves the way for a new class of robots that are intuitive to use, highly accurate and reliable, and possess a unique level of musical expressiveness.</p>


2021 ◽  
Author(s):  
◽  
Jason Long

<p>A closed-loop control system is any configuration that feeds information about its output back into the control stream. These types of systems have been in use for hundreds of years in various engineering related disciplines to carry out operations such as keeping rooms at the correct temperature, implementing cruise control in cars, and precisely positioning industrial machinery. When a musician performs a piece, a type of biological closed loop is invoked in which the player continuously listens to the sound of their instrument, and adjusts their actions in order to ensure their performance is as desired.  However, most musical robots do not possess this ability, instead relying on open-loop systems without feedback. This results in the need for much manual intervention from the operators of these robots, unintuitive control interfaces for composing and performing music with them, and tuning, timing, dynamics and other issues occurring during performances.  This thesis investigates applying closed-loop audio feedback techniques to the creation of musical robots to equip them with new expressive capabilities, interactive applications, musical accuracy, and greater autonomy. In order to realise these objectives, following an investigation of the history of musical automata and musical robotic control systems, several new robotic musical instruments are developed based on the principals of utilising embedded musical information retrieval techniques to allow the instruments to continuously ‘listen’ to themselves while they play.  The mechanical and electronic systems and firmware of a closed-loop glockenspiel, a modular unpitched percussion control system, and a robotic chordophone control system are described in detail, utilising new software and hardware created to be accessible to electronic artists. The novel capabilities of the instruments are demonstrated both through quantitative evaluations of the performance of their subsystems, and through composing original musical works specifically for the instruments. This paradigm shift in musical robotic construction paves the way for a new class of robots that are intuitive to use, highly accurate and reliable, and possess a unique level of musical expressiveness.</p>


2021 ◽  
Vol 2115 (1) ◽  
pp. 012023
Author(s):  
M Manju Prasad ◽  
M A Inayathullah

Abstract The Proportional Integral Derivative (PID) controller is an effective and common feedback control design used in closed loop control systems. One such best consideration of closed loop control system would be cruise control system. This is a system that automatically controls the speed of an electric vehicle despite external disturbances. In this paper, the goal is to design a PID controller using root locus technique for a closed loop cruise control system. By root locus approach, the controller constants and controller design is finalized. Simulation results through MATLAB environment validate the effectiveness of controller design.


Author(s):  
Moshu Qian ◽  
Zhen Zhang ◽  
Guanghua Zhong ◽  
Cuimei Bo

In this paper, a closed-loop brain stimulation control problem is investigated using the nonsingular integral terminal sliding mode (NITSM) control approach. First, the thalamocortical model of epilepsy seizure is given, which is composed of the cortical PY-IN subnetwork and the subcortical RE-TC subsystem. Then, a nonsingular integral terminal sliding mode surface is designed utilizing the derived output tracking error, and the stability of the sliding mode dynamics is proved by Lyapunov approach. Furthermore, a disturbance observer (DOB) based NITSM controller design approach is proposed for the established thalamocortical model, and the reachability of the closed-loop control system under the designed controller is analyzed using Lyapunov theory. Finally, simulation results are given to illustrate the effectiveness and superiority of the designed control scheme.


Sign in / Sign up

Export Citation Format

Share Document