Characterization of stochastic processes by stochastic integrals

1983 ◽  
Vol 15 (01) ◽  
pp. 81-98 ◽  
Author(s):  
B. L. S. Prakasa Rao

Letbe a continuous homogeneous stochastic process with independent increments. A review of the recent work on the characterization of Wiener and stable processes and connected results through stochastic integrals is presented. No proofs are given but appropriate references are mentioned.

1983 ◽  
Vol 15 (1) ◽  
pp. 81-98 ◽  
Author(s):  
B. L. S. Prakasa Rao

Let be a continuous homogeneous stochastic process with independent increments. A review of the recent work on the characterization of Wiener and stable processes and connected results through stochastic integrals is presented. No proofs are given but appropriate references are mentioned.


1980 ◽  
Vol 12 (3) ◽  
pp. 689-709 ◽  
Author(s):  
M. Riedel

Let X(t) be a homogeneous and continuous stochastic process with independent increments. The subject of this paper is to characterize the stable process by two identically distributed stochastic integrals formed by means of X(t) (in the sense of convergence in probability). The proof of the main results is based on a modern extension of the Phragmén-Lindelöf theory.


1980 ◽  
Vol 12 (03) ◽  
pp. 689-709 ◽  
Author(s):  
M. Riedel

Let X(t) be a homogeneous and continuous stochastic process with independent increments. The subject of this paper is to characterize the stable process by two identically distributed stochastic integrals formed by means of X(t) (in the sense of convergence in probability). The proof of the main results is based on a modern extension of the Phragmén-Lindelöf theory.


1969 ◽  
Vol 6 (02) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t 1 , t 2 ɛ T, t 1 〈 t2; the random variable X(t 2) – X(t 1) is called the increment of the process X(t) over the interval [t 1, t 2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε > 0, limτ→0 P(| X(t + τ) — X(t) | > ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


1969 ◽  
Vol 6 (2) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t1, t2 ɛ T, t1 〈 t2; the random variable X(t2) – X(t1) is called the increment of the process X(t) over the interval [t1, t2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε > 0, limτ→0P(| X(t + τ) — X(t) | > ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


1978 ◽  
Vol 18 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Noel Cressie

Consider the class of stochastic processes with stationary independent increments and finite variances; notable members are brownian motion, and the Poisson process. Now for Xt any member of this class of processes, we wish to find the optimum sampling points of Xt, for predicting . This design question is shown to be directly related to finding sampling points of Yt for estimating β in the regression equation, Yt = β + Xt. Since processes with stationary independent increments have linear drift, the regression equation for Yt is the first type of departure we might look for; namely quadratic drift, and unchanged covariance structure.


1993 ◽  
Vol 60 (3) ◽  
pp. 689-694 ◽  
Author(s):  
M. Di Paola

A generalization of the orthogonality conditions for a stochastic process to represent strongly stationary processes up to a fixed order is presented. The particular case of non-normal delta correlated processes, and the probabilistic characterization of linear systems subjected to strongly stationary stochastic processes are also discussed.


1980 ◽  
Vol 17 (2) ◽  
pp. 448-455 ◽  
Author(s):  
M. Riedel

Let X(t) be a continuous, homogeneous stochastic process with independent increments characterized by a, σ, M, N in the Lévy representation formula. In this note we obtain the Lévy canonical representation of the characteristic function of a stochastic integral (in the sense of convergence in probability) of the form (where υ(t) is a non-decreasing, non-negative and left-continuous function) in terms of υ(t), a, σ, M, N.


Sign in / Sign up

Export Citation Format

Share Document