Oblique derivative problem for quasilinear elliptic equations with VMO coefficients
1996 ◽
Vol 53
(3)
◽
pp. 501-513
◽
Keyword(s):
Strong solvability and uniqueness in the Sobolev space W2, q(Ω), q > n, are proved for the oblique derivative problemassuming the coefficients of the quasilinear elliptic operator to be Carathéodory functions, aij ∈ VMO∩L∞ with respect to x, and b to grow at most quadratically with respect to the gradient.
2006 ◽
Vol 136
(6)
◽
pp. 1131-1155
◽
2008 ◽
Vol 78
(1)
◽
pp. 157-162
◽
1995 ◽
Vol 347
(7)
◽
pp. 2481-2493
◽
Keyword(s):
2017 ◽
Vol 33
(2)
◽
pp. 287-296
◽
2018 ◽
Vol 148
(5)
◽
pp. 1075-1095
◽
1989 ◽
Vol 113
(3-4)
◽
pp. 215-228
◽
2012 ◽
Vol 389
(1)
◽
pp. 420-428
◽