scholarly journals A NOTE ON EDGE-CONNECTIVITY OF THE CARTESIAN PRODUCT OF GRAPHS

2011 ◽  
Vol 84 (1) ◽  
pp. 171-176
Author(s):  
LAKOA FITINA ◽  
C. T. LENARD ◽  
T. M. MILLS

AbstractThe main aim of this paper is to establish conditions that are necessary and sufficient for the edge-connectivity of the Cartesian product of two graphs to equal the sum of the edge-connectivities of the factors. The paper also clarifies an issue that has arisen in the literature on Cartesian products of graphs.

2018 ◽  
Vol 52 (1) ◽  
pp. 205-216 ◽  
Author(s):  
Vesna Iršič ◽  
Sandi Klavžar

The strong geodetic problem is a recent variation of the geodetic problem. For a graph G, its strong geodetic number sg(G) is the cardinality of a smallest vertex subset S, such that each vertex of G lies on a fixed shortest path between a pair of vertices from S. In this paper, the strong geodetic problem is studied on the Cartesian product of graphs. A general upper bound for sg(G □ H) is determined, as well as exact values for Km □ Kn, K1,k □ Pl, and prisms over Kn–e. Connections between the strong geodetic number of a graph and its subgraphs are also discussed.


Author(s):  
Simon Spacapan

Let G = (V (G),E(G)) be a graph. A set S ? E(G) is an edge k-cut in G if the graph G-S = (V (G), E(G) \ S) has at least k connected components. The generalized k-edge connectivity of a graph G, denoted as ?k(G), is the minimum cardinality of an edge k-cut in G. In this article we determine generalized 3-edge connectivity of Cartesian product of connected graphs G and H and describe the structure of any minimum edge 3-cut in G2H. The generalized 3-edge connectivity ?3(G2H) is given in terms of ?3(G) and ?3(H) and in terms of other invariants of factors G and H.


2021 ◽  
Vol 7 (2) ◽  
pp. 2634-2645
Author(s):  
Ganesh Gandal ◽  
◽  
R Mary Jeya Jothi ◽  
Narayan Phadatare ◽  

<abstract><p>Let $ G_1 \square G_2 $ be the Cartesian product of simple, connected and finite graphs $ G_1 $ and $ G_2 $. We give necessary and sufficient conditions for the Cartesian product of graphs to be very strongly perfect. Further, we introduce and characterize the co-strongly perfect graph. The very strongly perfect graph is implemented in the real-time application of a wireless sensor network to optimize the set of master nodes to communicate and control nodes placed in the field.</p></abstract>


2021 ◽  
Vol 37 (3) ◽  
pp. 907-917
Author(s):  
Martin Kreh ◽  
Jan-Hendrik de Wiljes

AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2014 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
M. R. CHITHRA ◽  
A. VIJAYAKUMAR

The diameter of a graph can be affected by the addition or deletion of edges. In this paper, we examine the Cartesian product of graphs whose diameter increases (decreases) by the deletion (addition) of a single edge. The problems of minimality and maximality of the Cartesian product of graphs with respect to its diameter are also solved. These problems are motivated by the fact that most of the interconnection networks are graph products and a good network must be hard to disrupt and the transmissions must remain connected even if some vertices or edges fail.


2019 ◽  
Vol 12 (2) ◽  
pp. 499-505
Author(s):  
Caen Grace Sarona Nianga ◽  
Sergio R. Canoy Jr.

Let G = (V (G),E(G)) be any simple undirected graph. The open hop neighborhood of v ϵ V(G) is the set 𝑁_𝐺^2(𝑣) = {u ϵ V(G):  𝑑_𝐺 (u,v) = 2}. Then G induces a topology τ_G on V (G) with base consisting of sets of the form F_G^2[A] = V(G) \ N_G^2 [A] where N_G^2 [A] = A ∪ {v ϵ V(G):  𝑁_𝐺^2(𝑣) ∩ A ≠ ∅ } and A ranges over all subsets of V (G). In this paper, we describe the topologies induced by the complement of a graph, the join, the corona, the composition and the Cartesian product of graphs.


Sign in / Sign up

Export Citation Format

Share Document