binary operations
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 70)

H-INDEX

14
(FIVE YEARS 2)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Mehmet Ali Öztürk ◽  
Damla Yılmaz ◽  
Young Bae Jun

First, semigroup structure is constructed by providing binary operations for the crossing cubic set structure. The concept of commutative crossing cubic ideal is introduced by applying crossing cubic set structure to commutative ideal in BCK-algebra, and several properties are investigated. The relationship between crossing cubic ideal and commutative crossing cubic ideal is discussed. An example to show that crossing cubic ideal is not commutative crossing cubic ideal is given, and then the conditions in which crossing cubic ideal can be commutative crossing cubic ideal are explored. Characterizations of commutative crossing cubic ideal are discussed, and the relationship between commutative crossing cubic ideal and crossing cubic level set is considered. An extension property of commutative crossing cubic ideal is established, and the translation of commutative crossing cubic ideal is studied. Conditions for the translation of crossing cubic set structure to be commutative crossing cubic ideal are provided, and its characterization is processed.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
María A. Navascués ◽  
Pasupathi Rajan ◽  
Arya Kumar Bedabrata Chand

The theory of metric spaces is a convenient and very powerful way of examining the behavior of numerous mathematical models. In a previous paper, a new operation between functions on a compact real interval called fractal convolution has been introduced. The construction was done in the framework of iterated function systems and fractal theory. In this article we extract the main features of this association, and consider binary operations in metric spaces satisfying properties as idempotency and inequalities related to the distance between operated elements with the same right or left factor (side inequalities). Important examples are the logical disjunction and conjunction in the set of integers modulo 2 and the union of compact sets, besides the aforementioned fractal convolution. The operations described are called in the present paper convolutions of two elements of a metric space E. We deduce several properties of these associations, coming from the considered initial conditions. Thereafter, we define self-operators (maps) on E by using the convolution with a fixed component. When E is a Banach or Hilbert space, we add some hypotheses inspired in the fractal convolution of maps, and construct in this way convolved Schauder and Riesz bases, Bessel sequences and frames for the space.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2343
Author(s):  
Roman Ger

I deal with an alienation problem for the system of two fundamental Cauchy functional equations with an unknown function f mapping a ring X into an integral domain Y and preserving binary operations of addition and multiplication, respectively. The resulting syzygies obtained by adding (resp. multiplying) these two equations side by side are discussed. The first of these two syzygies was first examined by Jean Dhombres in 1988 who proved that under some additional conditions concering the domain and range rings it forces f to be a ring homomorphism (alienation phenomenon). The novelty of the present paper is to look for sufficient conditions upon f solving the other syzygy to be alien.


Author(s):  
Daniel Tischhauser

It is well established the complex exponential and logarithm are multivalued functions, both failing to maintain most identities originally valid over the positive integers domain. Moreover the general case of complex logarithm, with a complex base, is hardly mentionned in mathematic litterature. We study the exponentiation and logarithm as binary operations where all operands are complex. In a redefined complex number system using an extension of the C field, hereafter named E, we prove both operations always produce single value results and maintain the validity of identities such as logu (w v) = logu (w) + logu (v) where u, v, w in E. There is a cost as some algebraic properties of the addition and subtraction will be diminished, though remaining valid to a certain extent. In order to handle formulas in a C and E dual number system, we introduce the notion of set precision and set truncation. We show complex numbers as defined in C are insufficiently precise to grasp all subtleties of some complex operations, as a result multivaluation, identity failures and, in specific cases, wrong results are obtained when computing exclusively in C. A geometric representation of the new complex number system is proposed, in which the complex plane appears as an orthogonal projection, and where the complex logarithm an exponentiation can be simply represented. Finally we attempt an algebraic formalization of E.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2951
Author(s):  
Helena Myšková ◽  
Ján Plavka

Max-plus algebra is the similarity of the classical linear algebra with two binary operations, maximum and addition. The notation Ax = Bx, where A, B are given (interval) matrices, represents (interval) two-sided (max, plus)-linear system. For the solvability of Ax = Bx, there are some pseudopolynomial algorithms, but a polynomial algorithm is still waiting for an appearance. The paper deals with the analysis of solvability of two-sided (max, plus)-linear equations with inexact (interval) data. The purpose of the paper is to get efficient necessary and sufficient conditions for solvability of the interval systems using the property of the solution set of the non-interval system Ax = Bx. The main contribution of the paper is a transformation of weak versions of solvability to either subeigenvector problems or to non-interval two-sided (max, plus)-linear systems and obtaining the equivalent polynomially checked conditions for the strong versions of solvability.


2021 ◽  
Vol 10 (10) ◽  
pp. 643
Author(s):  
Yuhao Huo ◽  
Anran Yang ◽  
Qingren Jia ◽  
Yebin Chen ◽  
Biao He ◽  
...  

Oblique photogrammetry models are indispensable for implementing digital twins of cities. Geographic information system researchers have proposed plenty of methods to load and visualize these city-scaled scenes. However, when the area viewed changes quickly in real-time rendering, current methods still require excessive GPU calculation and memory occupation. In this study, we propose a data organization method in which we merged all quadtrees and used a binary encoding method to encode nodes in a merged tree so that the parent–child relationship between the tree nodes could be calculated using rapid binary operations. After that, we developed a strategy to cancel the loading of redundant nodes based on the parent–child relationship, which helped to reduce the hard disk loading time and the amount of memory occupied in visualization. Moreover, we introduced a parameter to measure the area of the triangle mesh per pixel to achieve unified data scheduling under different production standards. We implemented our method based on Unreal Engine (UE), and three experiments were designed to illustrate the advantages of our methods in index acceleration, frame time, and memory reduction. The results show that our methods can significantly improve visualization fluency and reduce memory usage.


Author(s):  
Daniel Tischhauser

It is well established the complex exponential and logarithm are multivalued functions, both failing to maintain most identities originally valid over the positive integers domain. Moreover the general case of complex logarithm, with a complex base, is hardly mentionned in mathematic litterature. We study the exponentiation and logarithm as binary operations where all operands are complex. In a redefined complex number system using an extension of the C field, hereafter named E, we proove both operations always produce single value results and maintain the validity of identities such as logu (w v) = logu (w) + logu (v) where u, v, w in E. There is a cost as some algebraic properties of the addition and subtraction will be diminished, though remaining valid to a certain extent. In order to handle formulas in a C and E dual number system, we introduce the notion of set precision and set truncation. We show complex numbers as defined in C are insufficiently precise to grasp all subtleties of some complex operations, as a result multivaluation, identity failures and, in specific cases, wrong results are obtained when computing exclusively in C. A geometric representation of the new complex number system is proposed, in which the complex plane appears as an orthogonal projection, and where the complex logarithm an exponentiation can be simply represented. Finally we attempt an algebraic formalization of E.


Computability ◽  
2021 ◽  
pp. 1-8
Author(s):  
Pace P. Nielsen

The unary primitive recursive functions can be defined in terms of a finite set of initial functions together with a finite set of unary and binary operations that are primitive recursive in their inputs. We reduce arity considerations, by show that two fixed unary operations suffice, and a single initial function can be chosen arbitrarily. The method works for many other classes of functions, including the unary partial computable functions. For this class of partial functions we also show that a single unary operation (together with any finite set of initial functions) will never suffice.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1471
Author(s):  
Mike Behrisch ◽  
Edith Vargas-García

As part of a project to identify all maximal centralising monoids on a four-element set, we determine all centralising monoids witnessed by unary or by idempotent binary operations on a four-element set. Moreover, we show that every centralising monoid on a set with at least four elements witnessed by the Maľcev operation of a Boolean group operation is always a maximal centralising monoid, i.e., a co-atom below the full transformation monoid. On the other hand, we also prove that centralising monoids witnessed by certain types of permutations or retractive operations can never be maximal.


Sign in / Sign up

Export Citation Format

Share Document