scholarly journals A criterion for metanilpotency of a finite group

2018 ◽  
Vol 21 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Raimundo Bastos ◽  
Carmine Monetta ◽  
Pavel Shumyatsky

AbstractWe prove that the kth term of the lower central series of a finite group G is nilpotent if and only if {|ab|=|a||b|} for any {\gamma_{k}}-commutators {a,b\in G} of coprime orders.

2016 ◽  
Vol 94 (2) ◽  
pp. 273-277
Author(s):  
AGENOR FREITAS DE ANDRADE ◽  
PAVEL SHUMYATSKY

The last term of the lower central series of a finite group $G$ is called the nilpotent residual. It is usually denoted by $\unicode[STIX]{x1D6FE}_{\infty }(G)$. The lower Fitting series of $G$ is defined by $D_{0}(G)=G$ and $D_{i+1}(G)=\unicode[STIX]{x1D6FE}_{\infty }(D_{i}(G))$ for $i=0,1,2,\ldots \,$. These subgroups are generated by so-called coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ and $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ in elements of $G$. More precisely, the set of coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ generates $\unicode[STIX]{x1D6FE}_{\infty }(G)$ whenever $k\geq 2$ while the set $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ generates $D_{k}(G)$ for $k\geq 0$. The main result of this article is the following theorem: let $m$ be a positive integer and $G$ a finite group. Let $X\subset G$ be either the set of all $\unicode[STIX]{x1D6FE}_{k}^{\ast }$-commutators for some fixed $k\geq 2$ or the set of all $\unicode[STIX]{x1D6FF}_{k}^{\ast }$-commutators for some fixed $k\geq 1$. Suppose that the size of $a^{X}$ is at most $m$ for any $a\in G$. Then the order of $\langle X\rangle$ is $(k,m)$-bounded.


1965 ◽  
Vol 17 ◽  
pp. 405-410 ◽  
Author(s):  
P. X. Gallagher

Let G be a finite group with commutator subgroup G′. In an earlier paper (4) it was shown that each element of G′ is a product of n commutators, if 4n ≥ |G′|. The object of this paper is to improve this result in two directions:Theorem 1a. If (n + 2)!n! > 2|G′| — 2, then each element of G′ is a product of n commutators.Theorem 1b. If G is a p-group, with |G′| = pa, and if n(n + 1) > a, then each element of G′ is a product of n commutators.


1962 ◽  
Vol 13 (2) ◽  
pp. 175-178 ◽  
Author(s):  
I. D. Macdonald

Letandbe, respectively, the upper and lower central series of a group G. Our purpose in this note is to extend known results and find some information as to which of the factors Zk/Zk−1 and Γk/Γk+1 may be infinite. Though our conclusions about the lower central series will be quite general we assume in the other case that the group is f.n., i.e. an extension of a finite group by a nilpotent group. The essential facts about f.n. groups are to be found in P. Hall's paper (4). We also refer to (4) for general notation; we reserve the letter k for positive integers.


Author(s):  
Eloisa Detomi ◽  
Pavel Shumyatsky

Let $K$ be a subgroup of a finite group $G$ . The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$ . Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$ . We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$ -bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$ . We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$ -bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$ , or a Sylow subgroup, etc.


1979 ◽  
Vol 85 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Gerald Losey ◽  
Nora Losey

1. LetGbe a group,ZGits integral group ring and Δ = ΔGthe augmentation idealZGBy anaugmentation quotientofGwe mean any one of theZG-moduleswheren, r≥ 1. In recent years there has been a great deal of interest in determining the abelian group structure of the augmentation quotientsQn(G) =Qn,1(G) and(see (1, 2, 7, 8, 9, 12, 13, 14, 15)). Passi(8) has shown that in order to determineQn(G) andPn(G) for finiteGit is sufficient to assume thatGis ap-group. Passi(8, 9) and Singer(13, 14) have obtained information on the structure of these quotients for certain classes of abelianp-groups. However little seems to be known of a quantitative nature for nonabelian groups. In (2) Bachmann and Grünenfelder have proved the following qualitative result: ifGis a finite group then there exist natural numbersn0and π such thatQn(G) ≅Qn+π(G) for alln≥n0; ifGωis the nilpotent residual ofGandG/Gωhas classcthen π divides l.c.m. {1, 2, …,c}. There do not appear to be any examples in the literature of this periodic behaviour forc> 1. One of goals here is to present such examples. These examples will be from the class of finitep-groups in which the lower central series is anNp-series.


1979 ◽  
Vol 85 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Robert Sandling ◽  
Ken-Ichi Tahara

Let G be a group with the lower central seriesLetwhere Σ runs over all non-negative integers a1, a2,…, an such that and is the aith symmetric power of the abelian group Gi/Gi+1 whereLet I (G) be the augmentation ideal of G in , the group ring of G over . Define the additive group Qn (G) = In (G) / In+1 (G) for any n ≥ 1. Then it is well known that Q1(G) ≅ W1(G) for any group G. Losey (4,5) proved that Q2(G) ≅ W2(G) for any finitely generated group G. Furthermore recently Tahara(12) proved that Q3(G) is a certain precisely defined quotient of W3(G) for any finite group G.


Author(s):  
ALEJANDRO ADEM ◽  
FREDERICK R. COHEN ◽  
ENRIQUE TORRES GIESE

AbstractLet G denote a topological group. In this paper the descending central series of free groups are used to construct simplicial spaces of homomorphisms with geometric realizations B(q, G) that provide a filtration of the classifying space BG. In particular this setting gives rise to a single space constructed out of all the spaces of ordered commuting n–tuples of elements in G. Basic properties of these constructions are discussed, including the homotopy type and cohomology when the group G is either a finite group or a compact connected Lie group. For a finite group the construction gives rise to a covering space with monodromy related to a delicate result in group theory equivalent to the odd-order theorem of Feit–Thompson. The techniques here also yield a counting formula for the cardinality of Hom(π, G) where π is any descending central series quotient of a finitely generated free group. Another application is the determination of the structure of the spaces B(2, G) obtained from commuting n-tuples in G for finite groups such that the centralizer of every non–central element is abelian (known as transitively commutative groups), which played a key role in work by Suzuki on the structure of finite simple groups.


Author(s):  
YANJUN LIU ◽  
WOLFGANG WILLEMS

Abstract Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$ , where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.


Sign in / Sign up

Export Citation Format

Share Document