scholarly journals Whitehead products in the complex Stiefel manifolds

1983 ◽  
Vol 26 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Yasukuni Furukawa

The complex Stiefel manifoldWn,k, wheren≦k≦1, is a space whose points arek-frames inCn. By using the formula of McCarty [4], we will make the calculations of the Whitehead products in the groups π*(Wn,k). The case of real and quaternionic will be treated by Nomura and Furukawa [7]. The product [[η],j1l] appears as generator of the isotropy group of the identity map of Stiefel manifolds. In this note we use freely the results of the 2-components of the homotopy groups of real and complex Stiefel manifolds such as Paechter [8], Hoo-Mahowald [1], Nomura [5], Sigrist [9] and Nomura-Furukawa [6].

Author(s):  
Jun Wang ◽  
Xuezhi Zhao

Let [Formula: see text] be a subset of vector space or projective space. The authors define generalized configuration space of [Formula: see text] which is formed by [Formula: see text]-tuples of elements of [Formula: see text], where any [Formula: see text] elements of each [Formula: see text]-tuple are linearly independent. The generalized configuration space gives a generalization of Fadell’s classical configuration space, and Stiefel manifold. Denote generalized configuration space of [Formula: see text] by [Formula: see text]. For studying topological property of the generalized configuration spaces, the authors calculate homotopy groups for some special cases. This paper gives the fundamental groups of generalized configuration spaces of [Formula: see text] for some special cases, and the connections between the homotopy groups of generalized configuration spaces of [Formula: see text] and the homotopy groups of Stiefel manifolds. It is also proved that the higher homotopy groups of generalized configuration spaces [Formula: see text] and [Formula: see text] are isomorphic.


1965 ◽  
Vol 71 (4) ◽  
pp. 661-668 ◽  
Author(s):  
C. S. Hoo ◽  
M. E. Mahowald

1982 ◽  
Vol 92 (1) ◽  
pp. 139-161 ◽  
Author(s):  
Hideaki Ōshima

The purpose of this note is to determine some unstable James numbers of Stiefel manifolds. We denote the real numbers by R, the complex numbers by C, and the quaternions by H. Let F be one of these fields with the usual norm, and d = dimRF. Let On, k = On, k(F) be the Stiefel manifold of all orthonormal k–frames in Fn, and q: On, k → Sdn−1 the bundle projection which associates with each frame its last vector. Then the James number O{n, k} = OF{n, k} is defined as the index of q* πdn−1(On, k) in πdn−1(Sdn−1). We already know when O{n, k} is 1 (cf. (1), (2), (3), (13), (33)), and also the value of OK{n, k} (cf. (1), (13), (15), (34)). In this note we shall consider the complex and quaternionic cases. For earlier work see (11), (17), (23), (27), (29), (31) and (32). In (27) we defined the stable James number , which was a divisor of O{n, k}. Following James we shall use the notations X{n, k}, Xs{n, k}, W{n, k} and Ws{n, k} instead of OH{n, k}, , Oc{n, k} and respectively. In (27) we noticed that O{n, k} = Os{n, k} if n ≥ 2k– 1, and determined Xs{n, k} for 1 ≤ k ≤ 4, and also Ws{n, k} for 1 ≤ k ≤ 8. On the other hand Sigrist (31) calculated W{n, k} for 1 ≤ k ≤ 4. He informed the author that W{6,4} was not 4 but 8. Since Ws{6,4} = 4 (cf. § 5 below) this yields that the unstable James number does not equal the stable one in general.


2019 ◽  
Vol 150 (2) ◽  
pp. 549-567
Author(s):  
A. Skopenkov

AbstractFor a smooth manifold N denote by Em(N) the set of smooth isotopy classes of smooth embeddings N → ℝm. A description of the set Em(Sp × Sq) was known only for p = q = 0 or for p = 0, m ≠ q + 2 or for 2m ⩾ 2(p + q) + max{p, q} + 4. (The description was given in terms of homotopy groups of spheres and of Stiefel manifolds.) For m ⩾ 2p + q + 3 we introduce an abelian group structure on Em(Sp × Sq) and describe this group ‘up to an extension problem’. This result has corollaries which, under stronger dimension restrictions, more explicitly describe Em(Sp × Sq). The proof is based on relations between sets Em(N) for different N and m, in particular, on a recent exact sequence of M. Skopenkov.


Author(s):  
M. F. Atiyah ◽  
J. A. Todd

In a recent series of papers (10), (11), (12), I. M. James has made an illuminating study of Stiefel manifolds. We shall begin by describing his results (for the complex case). Let Wn, k, for k > 1, denote the complex Stiefel manifold U(n)/U(n − k), where U(n) is the unitary group in n variables. Then we have a natural fibre map Wn, k → Wn, 1 = S2n−1, where Sr denotes the r-dimensional sphere. Let Pn, k, for k ≥ 1, denote the ‘stunted complex projective space’ obtained from the (n − 1)-dimensional complex projective space† Pn by identifying to a point a subspace Pn−k. Then we have a natural ‘cofibre map’ Pn, k → Pn, 1 = S2n−2. The space Pn, k is said to be S-reducible if some suspension of the map Pn, k → S2n−2 has a right homotopy inverse. The results of James can then be summarized as follows.


Sign in / Sign up

Export Citation Format

Share Document