scholarly journals There are no universal ternary quadratic forms over biquadratic fields

2020 ◽  
Vol 63 (3) ◽  
pp. 861-912 ◽  
Author(s):  
Jakub Krásenský ◽  
Magdaléna Tinková ◽  
Kristýna Zemková

AbstractWe study totally positive definite quadratic forms over the ring of integers $\mathcal {O}_K$ of a totally real biquadratic field $K=\mathbb {Q}(\sqrt {m}, \sqrt {s})$. We restrict our attention to classic forms (i.e. those with all non-diagonal coefficients in $2\mathcal {O}_K$) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of $\mathcal {O}_K$). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of $\mathcal {O}_K$; we prove several new results about their properties.

2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2021 ◽  
Vol 71 (6) ◽  
pp. 1339-1360
Author(s):  
Kristýna Zemková

Abstract In this article, the standard correspondence between the ideal class group of a quadratic number field and the equivalence classes of binary quadratic forms of given discriminant is generalized to any base number field of narrow class number one. The article contains an explicit description of the correspondence. In the case of totally negative discriminants, equivalent conditions are given for a binary quadratic form to be totally positive definite.


1985 ◽  
Vol 28 (1) ◽  
pp. 3-38 ◽  
Author(s):  
John J. Millson

AbstractTwo constructions of cohomology classes for congruence subgroups of unit groups of quadratic forms over totally real number fields are given and shown to coincide. One is geometric, using cycles, and the other is analytic, using the oscillator (Weil) representation. Considerable background material on this representation is given.


Author(s):  
ANDREAS NICKEL

AbstractLet L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and thus generalizes also the well-known Coates–Sinnott conjecture. We show that our conjecture is implied by the appropriate special case of the equivariant Tamagawa number conjecture (ETNC) provided that the Quillen–Lichtenbaum conjecture holds. Moreover, we prove induction results for the ETNC in the case of Tate motives h0(Spec(L))(r), where r is a strictly negative integer. In particular, this implies the ETNC for the pair (h0(Spec(L))(r), ), where L is totally real, r < 0 is odd and is a maximal order containing ℤ[]G, and will also provide some evidence for our conjecture.


Sign in / Sign up

Export Citation Format

Share Document