Positive definite almost regular ternary quadratic forms over totally real number fields

2008 ◽  
Vol 40 (6) ◽  
pp. 1025-1037 ◽  
Author(s):  
Wai Kiu Chan ◽  
Maria Ines Icaza
2020 ◽  
Vol 63 (3) ◽  
pp. 861-912 ◽  
Author(s):  
Jakub Krásenský ◽  
Magdaléna Tinková ◽  
Kristýna Zemková

AbstractWe study totally positive definite quadratic forms over the ring of integers $\mathcal {O}_K$ of a totally real biquadratic field $K=\mathbb {Q}(\sqrt {m}, \sqrt {s})$. We restrict our attention to classic forms (i.e. those with all non-diagonal coefficients in $2\mathcal {O}_K$) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of $\mathcal {O}_K$). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of $\mathcal {O}_K$; we prove several new results about their properties.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


Author(s):  
Seiji Kuga

In this paper, we give linear relations between the Fourier coefficients of a special Hilbert modular form of half integral weight and some arithmetic functions. As a result, we have linear relations for the special [Formula: see text]-values over certain totally real number fields.


2020 ◽  
Vol 21 (2) ◽  
pp. 299
Author(s):  
A. A. Andrade ◽  
A. J. Ferrari ◽  
J. C. Interlando ◽  
R. R. Araujo

A lattice construction using Z-submodules of rings of integers of number fields is presented. The construction yields rotated versions of the laminated lattices A_n for n = 2,3,4,5,6, which are the densest lattices in their respective dimensions. The sphere packing density of a lattice is a function of its packing radius, which in turn can be directly calculated from the minimum squared Euclidean norm of the lattice. Norms in a lattice that is realized by a totally real number field can be calculated by the trace form of the field restricted to its ring of integers. Thus, in the present work, we also present the trace form of the maximal real subfield of a cyclotomic field. Our focus is on totally real number fields since their associated lattices have full diversity. Along with high packing density, the full diversity feature is desirable in lattices that are used for signal transmission over both Gaussian and Rayleigh fading channels.


Sign in / Sign up

Export Citation Format

Share Document