scholarly journals On the spectrum of n-tuples of p-hyponormal operators

1998 ◽  
Vol 40 (1) ◽  
pp. 123-131 ◽  
Author(s):  
B. P. Duggal

Let B(H) denote the algebra of operators (i.e., bounded linear transformations) on the Hilbert space H. A ∈ B (H) is said to be p-hyponormal (0<p<l), if (AA*)γ < (A*A)p. (Of course, a l-hyponormal operator is hyponormal.) The p-hyponormal property is monotonic decreasing in p and a p-hyponormal operator is q-hyponormal operator for all 0<q <p. Let A have the polar decomposition A = U |A|, where U is a partial isometry and |A| denotes the (unique) positive square root of A*A.If A has equal defect and nullity, then the partial isometry U may be taken to be unitary. Let ℋU(p) denote the class of p -hyponormal operators for which U in A = U |A| is unitary. ℋU(l/2) operators were introduced by Xia and ℋU(p) operators for a general 0<p<1 were first considered by Aluthge (see [1,14]); ℋU(p) operators have since been considered by a number of authors (see [3, 4, 5, 9, 10] and the references cited in these papers). Generally speaking, ℋU(p) operators have spectral properties similar to those of hyponormal operators. Indeed, let A ε ℋU(p), (0<p <l/2), have the polar decomposition A = U|A|, and define the ℋW(p + 1/2) operator  by A = |A|1/2U |A|l/2 Let  = V |Â| Â= |Â|1/2VÂ|ÂAcirc;|1/2. Then we have the following result.

1994 ◽  
Vol 36 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Muneo Chō

Let ℋ be a complex Hilbert space and B(ℋ) be the algebra of all bounded linear opeators on ℋ. An operator T ∈ B(ℋ) is said to be p-hyponormal if (T*T)p–(TT*)p. If p = 1, T is hyponormal and if p = ½ is semi-hyponormal. It is well known that a p-hyponormal operator is p-hyponormal for q≤p. Hyponormal operators have been studied by many authors. The semi-hyponormal operator was first introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A. Aluthge in [1]. Let T be a p-hyponormal operator and T=U|T| be a polar decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4845-4854
Author(s):  
Muneo Chō ◽  
Dijana Mosic ◽  
Biljana Nacevska-Nastovska ◽  
Taiga Saito

In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a complex Hilbert space H such that T2 is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis ?(T) ? (-?(T)) ? {0}, we study spectral properties of a square hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and x,y ? H are corresponding eigen-vectors, respectively, then ?x,y? = 0. Also, we define nth hyponormal operators and present some properties of this kind of operators.


1989 ◽  
Vol 31 (2) ◽  
pp. 165-168
Author(s):  
B. P. Duggal

We consider operators, i.e. bounded linear transformations, on an infinite dimensional separable complex Hilbert space H into itself. The operator A is said to be dominant if for each complex number λ there exists a number Mλ(≥l) such that ∥(A – λ)*x∥ ≤ Mλ∥A – λ)x∥ for each x∈H. If there exists a number M≥Mλ for all λ, then the dominant operator A is said to be M-hyponormal. The class of dominant (and JW-hyponormal) operators was introduced by J. G. Stampfli during the seventies, and has since been considered in a number of papers, amongst then [7], [11]. It is clear that a 1-hyponormal is hyponormal. The operator A*A is said to be quasi-normal if Acommutes with A*A, and we say that A is subnormal if A has a normal extension. It is known that the classes consisting of these operators satisfy the following strict inclusion relation:


2004 ◽  
Vol 76 (2) ◽  
pp. 291-302 ◽  
Author(s):  
M. Berkani ◽  
A. Arroud

AbstractLet T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.


2006 ◽  
Vol 13 (2) ◽  
pp. 307-313
Author(s):  
Salah Mecheri

Abstract Let 𝐴 be a bounded linear operator acting on a Hilbert space 𝐻. The 𝐵-Weyl spectrum of 𝐴 is the set σ 𝐵𝑤(𝐴) of all ⋋ ∈ ℂ such that 𝐴 – ⋋𝐼 is not a 𝐵-Fredholm operator of index 0. Let 𝐸(𝐴) be the set of all isolated eigenvalues of 𝐴. Recently, in [Berkani and Arroud, J. Aust. Math. Soc. 76: 291–302, 2004] the author showed that if 𝐴 is hyponormal, then 𝐴 satisfies the generalized Weyl's theorem σ 𝐵𝑤(𝐴) = σ(𝐴) \ 𝐸(𝐴), and the 𝐵-Weyl spectrum σ 𝐵𝑤(𝐴) of 𝐴 satisfies the spectral mapping theorem. Lee [Han, Proc. Amer. Math. Soc. 128: 2291–2296, 2000] showed that Weyl's theorem holds for algebraically hyponormal operators. In this paper the above results are generalized to an algebraically (𝑝, 𝑘)-quasihyponormal operator which includes an algebraically hyponormal operator.


Author(s):  
B. JEFFERIES ◽  
G. W. JOHNSON

In recent papers the authors presented the key ideas involved in their approach to Feynman's operational calculi for a system of not necessarily commuting bounded linear operators acting on a Banach space. The central objects of the theory are the disentangling algebra, a commutative Banach algebra, and the disentangling map which carries this commutative structure into the noncommutative algebra of operators. Under assumptions concerning the growth of disentangled exponential expressions, the associated functional calculus for the system of operators is a distribution with compact support which we view as the joint spectrum of the operators with respect to the disentangling map. The spectral properties of the disentangling maps are studied in this paper.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


1994 ◽  
Vol 17 (4) ◽  
pp. 717-724
Author(s):  
N. R. Nandakumar ◽  
Cornelis V. Vandermee

Conditions are provided for the local compactness of the closed semi-algebra generated by a finite collection of commuting bounded linear operators with equibounded iterates in terms of their joint spectral properties.


2017 ◽  
Vol 31 (1) ◽  
pp. 165-171
Author(s):  
Paweł Wójcik

Abstract In this expository paper, we present a new and easier proof of the Polar Decomposition Theorem. Unlike in classical proofs, we do not use the square root of a positive matrix. The presented proof is accessible to a broad audience.


Sign in / Sign up

Export Citation Format

Share Document