scholarly journals GROUPS OF INFINITE RANK IN WHICH NORMALITY IS A TRANSITIVE RELATION

2013 ◽  
Vol 56 (2) ◽  
pp. 387-393 ◽  
Author(s):  
M. DE FALCO ◽  
F. DE GIOVANNI ◽  
C. MUSELLA ◽  
Y. P. SYSAK

AbstractA group is called a T-group if all its subnormal subgroups are normal. It is proved here that if G is a periodic (generalized) soluble group in which all subnormal subgroups of infinite rank are normal, then either G is a T-group or it has finite rank. It follows that if G is an arbitrary group whose Fitting subgroup has infinite rank, then G has the property T if and only if all its subnormal subgroups of infinite rank are normal.

2016 ◽  
Vol 95 (1) ◽  
pp. 38-47 ◽  
Author(s):  
FRANCESCO DE GIOVANNI ◽  
MARCO TROMBETTI

A group $G$ is said to have the $T$-property (or to be a $T$-group) if all its subnormal subgroups are normal, that is, if normality in $G$ is a transitive relation. The aim of this paper is to investigate the behaviour of uncountable groups of cardinality $\aleph$ whose proper subgroups of cardinality $\aleph$ have a transitive normality relation. It is proved that such a group $G$ is a $T$-group (and all its subgroups have the same property) provided that $G$ has an ascending subnormal series with abelian factors. Moreover, it is shown that if $G$ is an uncountable soluble group of cardinality $\aleph$ whose proper normal subgroups of cardinality $\aleph$ have the $T$-property, then every subnormal subgroup of $G$ has only finitely many conjugates.


2014 ◽  
Vol 13 (04) ◽  
pp. 1350134 ◽  
Author(s):  
M. DE FALCO ◽  
F. DE GIOVANNI ◽  
C. MUSELLA

It is known that there exist soluble groups of infinite rank which satisfy the minimal condition on normal subgroups. We prove here that if G is any soluble group satisfying the minimal condition on normal subgroups of infinite rank, then either G has finite rank or it satisfies the minimal condition on normal subgroups.


2003 ◽  
pp. 366-376 ◽  
Author(s):  
Leonid A. Kurdachenko ◽  
Panagiotis Soules

1991 ◽  
Vol 56 (4) ◽  
pp. 1391-1399 ◽  
Author(s):  
Ali Nesin

AbstractWe define a characteristic and definable subgroup F*(G) of any group G of finite Morley rank that behaves very much like the generalized Fitting subgroup of a finite group. We also prove that semisimple subnormal subgroups of G are all definable and that there are finitely many of them.


2000 ◽  
Vol 42 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Clara Franchi

For each m≥1, u_{m}(G) is defined to be the intersection of the normalizers of all the subnormal subgroups of defect at most m in G. An ascending chain of subgroups u_{m,i}(G) is defined by setting u_{m,i}(G)/u_{m,i−1}(G)=u_{m}(G/u_{m,i−1}(G)). If u_{m,n}(G)=G, for some integer n, the m-Wielandt length of G is the minimal of such n.In [3], Bryce examined the structure of a finite soluble group with given m-Wielandt length, in terms of its polynilpotent structure. In this paper we extend his results to infinite soluble groups.1991 Mathematics Subject Classification. 20E15, 20F22.


2014 ◽  
Vol 91 (2) ◽  
pp. 219-226
Author(s):  
NING SU ◽  
YANMING WANG

AbstractThe Wielandt subgroup of a group $G$, denoted by ${\it\omega}(G)$, is the intersection of the normalisers of all subnormal subgroups of $G$. The terms of the Wielandt series of $G$ are defined, inductively, by putting ${\it\omega}_{0}(G)=1$ and ${\it\omega}_{i+1}(G)/{\it\omega}_{i}(G)={\it\omega}(G/{\it\omega}_{i}(G))$. In this paper, we investigate the relations between the$p$-length of a $p$-soluble finite group and the Wielandt series of its Sylow $p$-subgroups. Some recent results are improved.


1987 ◽  
Vol 102 (3) ◽  
pp. 431-441 ◽  
Author(s):  
Brian Hartley ◽  
Volker Turau

Let G be a finite soluble group with Fitting subgroup F(G). The Fitting series of G is defined, as usual, by F0(G) = 1 and Fi(G)/Fi−1(G) = F(G/Fi−1(G)) for i ≥ 1, and the Fitting height h = h(G) of G is the least integer such that Fn(G) = G. Suppose now that a finite soluble group A acts on G. Let k be the composition length of A, that is, the number of prime divisors (counting multiplicities) of |A|. There is a certain amount of evidence in favour of theCONJECTURE. |G:Fk(G)| is bounded by a number depending only on |A| and |CG(A)|.


1974 ◽  
Vol 17 (2) ◽  
pp. 222-233 ◽  
Author(s):  
Narain Gupta ◽  
Frank Levin

Any variety of groups is generated by its free group of countably infinite rank. A problem that appears in various forms in Hanna Neumann's book [7] (see, for intance, sections 2.4, 2.5, 3.5, 3.6) is that of determining if a given variety B can be generated by Fk(B), one of its free groups of finite rank; and if so, if Fn(B) is residually a k-generator group for all n ≧ k. (Here, as in the sequel, all unexplained notation follows [7].)


2007 ◽  
Vol 17 (05n06) ◽  
pp. 1021-1031
Author(s):  
N. GUPTA ◽  
I. B. S. PASSI

For fixed m, n ≥ 2, we examine the structure of the nth lower central subgroup γn(F) of the free group F of rank m with respect to a certain finite chain F = F(0) > F(1) > ⋯ > F(l-1) > F(l) = {1} of free groups in which F(k) is of finite rank m(k) and is contained in the kth derived subgroup δk(F) of F. The derived subgroups δk(F/γn(F)) of the free nilpotent group F/γn(F) are isomorphic to the quotients F(k)/(F(k) ∩ γn(F)) and admit presentations of the form 〈xk,1,…,xk,m(k): γ(n)(F(k))〉, where γ(n)(F(k)), contained in γn(F), is a certain partial lower central subgroup of F(k). We give a complete description of γn(F) as a staggered product Π1 ≤ k ≤ l-1(γ〈n〉(F(k))*γ[n](F(k)))F(k+1), where γ〈n〉(F(k)) is a free factor of the derived subgroup [F(k),F(k)] of F(k) having countable infinite rank and generated by a certain set of reduced commutators of weight at least n, and γ[n](F(k)) is the subgroup generated by a certain finite set of products of non-reduced ordered commutators of weight at least n. There are some far-reaching consequences.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


Sign in / Sign up

Export Citation Format

Share Document