scholarly journals Joint distribution of a spectrally negative Lévy process and its occupation time, with step option pricing in view

2016 ◽  
Vol 48 (1) ◽  
pp. 274-297 ◽  
Author(s):  
Hélène Guérin ◽  
Jean-François Renaud

Abstract We study the distribution Ex[exp(-q∫0t1(a,b)(Xs)ds); Xt ∈ dy], where -∞ ≤ a < b < ∞, and where q, t > 0 and x ∈ R for a spectrally negative Lévy process X. More precisely, we identify the Laplace transform with respect to t of this measure in terms of the scale functions of the underlying process. Our results are then used to price step options and the particular case of an exponential spectrally negative Lévy jump-diffusion model is discussed.

2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2011 ◽  
Vol 48 (01) ◽  
pp. 200-216
Author(s):  
E. J. Baurdoux ◽  
K. Van Schaik

Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game, a game version of the McKean optimal stopping problem (American put), driven by a spectrally negative Lévy process. We improve their characterisation of a saddle point for this game when the driving process has a Gaussian component and negative jumps. In particular, we show that the exercise region of the minimiser consists of a singleton when the penalty parameter is larger than some threshold and ‘thickens’ to a full interval when the penalty parameter drops below this threshold. Expressions in terms of scale functions for the general case and in terms of polynomials for a specific jump diffusion case are provided.


2011 ◽  
Vol 48 (1) ◽  
pp. 200-216 ◽  
Author(s):  
E. J. Baurdoux ◽  
K. Van Schaik

Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game, a game version of the McKean optimal stopping problem (American put), driven by a spectrally negative Lévy process. We improve their characterisation of a saddle point for this game when the driving process has a Gaussian component and negative jumps. In particular, we show that the exercise region of the minimiser consists of a singleton when the penalty parameter is larger than some threshold and ‘thickens’ to a full interval when the penalty parameter drops below this threshold. Expressions in terms of scale functions for the general case and in terms of polynomials for a specific jump diffusion case are provided.


2004 ◽  
Vol 41 (04) ◽  
pp. 1191-1198 ◽  
Author(s):  
Xiaowen Zhou

We consider a two-sided exit problem for a Lévy process with no positive jumps. The Laplace transform of the time when the process first exits an interval from above is obtained. It is expressed in terms of another Laplace transform for the one-sided exit problem. Applications of this result are discussed. In particular, a new expression for the solution to the two-sided exit problem is obtained. The joint distribution of the minimum and the maximum values of such a Lévy process is also studied.


2009 ◽  
Vol 46 (2) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2004 ◽  
Vol 41 (4) ◽  
pp. 1191-1198 ◽  
Author(s):  
Xiaowen Zhou

We consider a two-sided exit problem for a Lévy process with no positive jumps. The Laplace transform of the time when the process first exits an interval from above is obtained. It is expressed in terms of another Laplace transform for the one-sided exit problem. Applications of this result are discussed. In particular, a new expression for the solution to the two-sided exit problem is obtained. The joint distribution of the minimum and the maximum values of such a Lévy process is also studied.


2006 ◽  
Vol 43 (01) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2006 ◽  
Vol 43 (1) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2021 ◽  
Vol 53 (1) ◽  
pp. 279-299
Author(s):  
Mónica B. Carvajal Pinto ◽  
Kees van Schaik

AbstractWe consider the optimal prediction problem of stopping a spectrally negative Lévy process as close as possible to a given distance $b \geq 0$ from its ultimate supremum, under a squared-error penalty function. Under some mild conditions, the solution is fully and explicitly characterised in terms of scale functions. We find that the solution has an interesting non-trivial structure: if b is larger than a certain threshold then it is optimal to stop as soon as the difference between the running supremum and the position of the process exceeds a certain level (less than b), while if b is smaller than this threshold then it is optimal to stop immediately (independent of the running supremum and position of the process). We also present some examples.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 731
Author(s):  
Xiaoyu Tan ◽  
Shenghong Li ◽  
Shuyi Wang

This paper extends the traditional jump-diffusion model to a comprehensive general Lévy process model with the stochastic interest rate for European-style options pricing. By using the Girsanov theorem and Itô formula, we derive the uniform formalized pricing formulas under the equivalent martingale measure. This model contains not only the traditional jump-diffusion model, such as the compound Poisson model, the renewal model, the pure-birth jump-diffusion model, but also the infinite activities Lévy model.


Sign in / Sign up

Export Citation Format

Share Document