Random dynamical systems with jumps

2004 ◽  
Vol 41 (03) ◽  
pp. 890-910 ◽  
Author(s):  
Katarzyna Horbacz

We consider random dynamical systems with randomly chosen jumps on infinite-dimensional spaces. The choice of deterministic dynamical systems and jumps depends on a position. The system generalizes dynamical systems corresponding to learning systems, Poisson driven stochastic differential equations, iterated function system with infinite family of transformations and random evolutions. We will show that distributions which describe the dynamics of this system converge to an invariant distribution. We use recent results concerning asymptotic stability of Markov operators on infinite-dimensional spaces obtained by T. Szarek.

2004 ◽  
Vol 41 (3) ◽  
pp. 890-910 ◽  
Author(s):  
Katarzyna Horbacz

We consider random dynamical systems with randomly chosen jumps on infinite-dimensional spaces. The choice of deterministic dynamical systems and jumps depends on a position. The system generalizes dynamical systems corresponding to learning systems, Poisson driven stochastic differential equations, iterated function system with infinite family of transformations and random evolutions. We will show that distributions which describe the dynamics of this system converge to an invariant distribution. We use recent results concerning asymptotic stability of Markov operators on infinite-dimensional spaces obtained by T. Szarek.


2013 ◽  
Vol 59 (2) ◽  
pp. 281-298
Author(s):  
Dan Dumitru

Abstract We consider a complete ε-chainable metric space (X, d) and an infinite iterated function system (IIFS) formed by an infinite family of (ε, φ)-functions on X. The aim of this paper is to prove the existence and uniqueness of the attractors of such infinite iterated systems (IIFS) and to give some sufficient conditions for these attractors to be connected. Similar results are obtained in the case when the IIFS is formed by an infinite family of uniformly ε-locally strong Meir-Keeler functions.


2018 ◽  
Vol 34 (2) ◽  
pp. 334-355 ◽  
Author(s):  
Xiaopeng Chen ◽  
Anthony J. Roberts ◽  
Jinqiao Duan

2008 ◽  
Vol 08 (03) ◽  
pp. 365-381 ◽  
Author(s):  
NGUYEN DINH CONG ◽  
DOAN THAI SON ◽  
STEFAN SIEGMUND

Iterated function systems are examples of random dynamical systems and became popular as generators of fractals like the Sierpinski Gasket and the Barnsley Fern. In this paper we prove an ergodic theorem for iterated function systems which consist of countably many functions and which are contractive on average on an arbitrary compact metric space and we provide a computational version of this ergodic theorem in Euclidean space which allows to numerically approximate the time average together with an explicit error bound. The results are applied to an explicit example.


2008 ◽  
pp. 2815-2874
Author(s):  
Franco Flandoli ◽  
Peter Kloeden ◽  
Andrew Stuart

Sign in / Sign up

Export Citation Format

Share Document