iterated function systems
Recently Published Documents


TOTAL DOCUMENTS

639
(FIVE YEARS 110)

H-INDEX

26
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
María A. Navascués ◽  
Pasupathi Rajan ◽  
Arya Kumar Bedabrata Chand

The theory of metric spaces is a convenient and very powerful way of examining the behavior of numerous mathematical models. In a previous paper, a new operation between functions on a compact real interval called fractal convolution has been introduced. The construction was done in the framework of iterated function systems and fractal theory. In this article we extract the main features of this association, and consider binary operations in metric spaces satisfying properties as idempotency and inequalities related to the distance between operated elements with the same right or left factor (side inequalities). Important examples are the logical disjunction and conjunction in the set of integers modulo 2 and the union of compact sets, besides the aforementioned fractal convolution. The operations described are called in the present paper convolutions of two elements of a metric space E. We deduce several properties of these associations, coming from the considered initial conditions. Thereafter, we define self-operators (maps) on E by using the convolution with a fixed component. When E is a Banach or Hilbert space, we add some hypotheses inspired in the fractal convolution of maps, and construct in this way convolved Schauder and Riesz bases, Bessel sequences and frames for the space.


2021 ◽  
Author(s):  
Paola Barra ◽  
Riccardo Distasi ◽  
Chiara Pero ◽  
Stefano Ricciardi ◽  
Maurizio Tucci

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 245-277
Author(s):  
R Dániel Prokaj ◽  
Károly Simon

Abstract In this paper we consider iterated function systems (IFS) on the real line consisting of continuous piecewise linear functions. We assume some bounds on the contraction ratios of the functions, but we do not assume any separation condition. Moreover, we do not require that the functions of the IFS are injective, but we assume that their derivatives are separated from zero. We prove that if we fix all the slopes but perturb all other parameters, then for all parameters outside of an exceptional set of less than full packing dimension, the Hausdorff dimension of the attractor is equal to the exponent which comes from the most natural system of covers of the attractor.


Author(s):  
Natalia Jurga ◽  
Lawrence D. Lee

AbstractWe study a natural class of invariant measures supported on the attractors of a family of nonlinear, non-conformal iterated function systems introduced by Falconer, Fraser and Lee. These are pushforward quasi-Bernoulli measures, a class which includes the well-known class of Gibbs measures for Hölder continuous potentials. We show that these measures are exact dimensional and that their exact dimensions satisfy a Ledrappier–Young formula.


Author(s):  
R. Pasupathi ◽  
A. K. B. Chand ◽  
M. A. Navascués ◽  
M. V. Sebastián

2021 ◽  
pp. 1-36
Author(s):  
DE-JUN FENG ◽  
KÁROLY SIMON

Abstract This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint, 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .


Sign in / Sign up

Export Citation Format

Share Document