scholarly journals Exact estimation for Markov chain equilibrium expectations

2014 ◽  
Vol 51 (A) ◽  
pp. 377-389 ◽  
Author(s):  
Peter W. Glynn ◽  
Chang-Han Rhee

We introduce a new class of Monte Carlo methods, which we call exact estimation algorithms. Such algorithms provide unbiased estimators for equilibrium expectations associated with real-valued functionals defined on a Markov chain. We provide easily implemented algorithms for the class of positive Harris recurrent Markov chains, and for chains that are contracting on average. We further argue that exact estimation in the Markov chain setting provides a significant theoretical relaxation relative to exact simulation methods.

2014 ◽  
Vol 51 (A) ◽  
pp. 377-389 ◽  
Author(s):  
Peter W. Glynn ◽  
Chang-Han Rhee

We introduce a new class of Monte Carlo methods, which we call exact estimation algorithms. Such algorithms provide unbiased estimators for equilibrium expectations associated with real-valued functionals defined on a Markov chain. We provide easily implemented algorithms for the class of positive Harris recurrent Markov chains, and for chains that are contracting on average. We further argue that exact estimation in the Markov chain setting provides a significant theoretical relaxation relative to exact simulation methods.


2020 ◽  
Vol 26 (4) ◽  
pp. 303-313
Author(s):  
Karima Elkimakh ◽  
Abdelaziz Nasroallah

AbstractIn our paper [A. Nasroallah and K. Elkimakh, HMM with emission process resulting from a special combination of independent Markovian emissions, Monte Carlo Methods Appl. 23 2017, 4, 287–306] we have studied, in a first scenario, the three fundamental hidden Markov problems assuming that, given the hidden process, the observed one selects emissions from a combination of independent Markov chains evolving at the same time. Here, we propose to conduct the same study with a second scenario assuming that given the hidden process, the emission process selects emissions from a combination of independent Markov chain evolving according to their own clock. Three basic numerical examples are studied to show the proper functioning of the iterative algorithm adapted to the proposed model.


2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


Sign in / Sign up

Export Citation Format

Share Document