new class
Recently Published Documents


TOTAL DOCUMENTS

20057
(FIVE YEARS 4792)

H-INDEX

217
(FIVE YEARS 51)

2022 ◽  
Vol 578 ◽  
pp. 151986
Author(s):  
Tao Yang ◽  
Xingang Jiang ◽  
Wencai Yi ◽  
Xiaomin Cheng ◽  
Xiaobing Liu

2022 ◽  
Vol 27 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Nikolaos-Foivos Polychronou ◽  
Pierre-Henri Thevenon ◽  
Maxime Puys ◽  
Vincent Beroulle

With the advances in the field of the Internet of Things (IoT) and Industrial IoT (IIoT), these devices are increasingly used in daily life or industry. To reduce costs related to the time required to develop these devices, security features are usually not considered. This situation creates a major security concern. Many solutions have been proposed to protect IoT/IIoT against various attacks, most of which are based on attacks involving physical access. However, a new class of attacks has emerged targeting hardware vulnerabilities in the micro-architecture that do not require physical access. We present attacks based on micro-architectural hardware vulnerabilities and the side effects they produce in the system. In addition, we present security mechanisms that can be implemented to address some of these attacks. Most of the security mechanisms target a small set of attack vectors or a single specific attack vector. As many attack vectors exist, solutions must be found to protect against a wide variety of threats. This survey aims to inform designers about the side effects related to attacks and detection mechanisms that have been described in the literature. For this purpose, we present two tables listing and classifying the side effects and detection mechanisms based on the given criteria.


2022 ◽  
Vol 40 ◽  
pp. 1-13
Author(s):  
Fakhrodin Mohammadi ◽  
Hossein Hassani

‎In this article‎, ‎an efficient numerical method based on a new class of orthogonal polynomials‎, ‎namely Chelyshkov polynomials‎, ‎has been presented to approximate solution of time-fractional telegraph (TFT) equations‎. ‎The fractional operational matrix of the Chelyshkov polynomials along with the typical collocation method is used to reduces TFT equations to a system of algebraic equations‎. ‎The error analysis of the proposed collocation method is also investigated‎. ‎A comparison with other published results confirms that the presented Chelyshkov collocation approach is efficient and accurate for solving TFT equations‎. ‎Illustrative examples are included to demonstrate the efficiency of the Chelyshkov method‎.


2022 ◽  
Vol 40 ◽  
pp. 1-15
Author(s):  
Subuhi Khan ◽  
Tabinda Nahid

The intended objective of this paper is to introduce a new class of the hybrid q-Sheffer polynomials by means of the generating function and series definition. The determinant definition and other striking properties of these polynomials are established. Certain results for the continuous q-Hermite-Appell polynomials are obtained. The graphical depictions are performed for certain members of the hybrid q-Sheffer family. The zeros of these members are also explored using numerical simulations. Finally, the orthogonality condition for the hybrid q-Sheffer polynomials is established.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Kin Keung Lai ◽  
Jaya Bisht ◽  
Nidhi Sharma ◽  
Shashi Kant Mishra

We introduce a new class of interval-valued preinvex functions termed as harmonically h-preinvex interval-valued functions. We establish new inclusion of Hermite–Hadamard for harmonically h-preinvex interval-valued function via interval-valued Riemann–Liouville fractional integrals. Further, we prove fractional Hermite–Hadamard-type inclusions for the product of two harmonically h-preinvex interval-valued functions. In this way, these findings include several well-known results and newly obtained results of the existing literature as special cases. Moreover, applications of the main results are demonstrated by presenting some examples.


2022 ◽  
Vol 6 (1) ◽  
pp. 45
Author(s):  
Ravi P. Agarwal ◽  
Hana Al-Hutami ◽  
Bashir Ahmad

We introduce a new class of boundary value problems consisting of a q-variant system of Langevin-type nonlinear coupled fractional integro-difference equations and nonlocal multipoint boundary conditions. We make use of standard fixed-point theorems to derive the existence and uniqueness results for the given problem. Illustrative examples for the obtained results are also presented.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 620
Author(s):  
Valentina Palazzi ◽  
Luca Roselli ◽  
Manos M. Tentzeris ◽  
Paolo Mezzanotte ◽  
Federico Alimenti

This paper presents a novel passive Schottky-diode frequency doubler equipped with an on-off keying (OOK) modulation port to be used in harmonic transponders for both identification and sensing applications. The amplitude modulation of the second-harmonic output signal is achieved by driving a low-frequency MOSFET, which modifies the dc impedance termination of the doubler. Since the modulation signal is applied to the gate port of the transistor, no static current is drained. A proof-of-concept prototype was manufactured and tested, operating at 1.04 GHz. An on/off ratio of 23 dB was observed in the conversion loss of the doubler for an available input power of −10 dBm. The modulation port of the circuit was excited with a square wave (fm up to 15 MHz), and the measured sidebands in the spectrum featured a good agreement with the theory. Then, the doubler was connected to a harmonic antenna system and tested in a wireless experiment for fm up to 1 MHz, showing an excellent performance. Finally, an experiment was conducted where the output signal of the doubler was modulated by a reed switch used to measure the rotational speed of an electrical motor. This work opens the door to a new class of frequency doublers, suitable for ultra low-power harmonic transponders for identification and sensing applications.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 257
Author(s):  
Khadidja Kessas ◽  
Zhor Chouari ◽  
Imen Ghzaiel ◽  
Amira Zarrouk ◽  
Mohamed Ksila ◽  
...  

Mitochondria are multifunctional organelles that participate in a wide range of metabolic processes, including energy production and biomolecule synthesis. The morphology and distribution of intracellular mitochondria change dynamically, reflecting a cell’s metabolic activity. Oxidative stress is defined as a mismatch between the body’s ability to neutralise and eliminate reactive oxygen and nitrogen species (ROS and RNS). A determination of mitochondria failure in increasing oxidative stress, as well as its implications in neurodegenerative illnesses and apoptosis, is a significant developmental process of focus in this review. The neuroprotective effects of bioactive compounds linked to neuronal regulation, as well as related neuronal development abnormalities, will be investigated. In conclusion, the study of secondary components and the use of mitochondrial features in the analysis of various neurodevelopmental diseases has enabled the development of a new class of mitochondrial-targeted pharmaceuticals capable of alleviating neurodegenerative disease states and enabling longevity and healthy ageing for the vast majority of people.


Sign in / Sign up

Export Citation Format

Share Document