The progeny of a branching process

1971 ◽  
Vol 8 (02) ◽  
pp. 407-412 ◽  
Author(s):  
R. A. Doney

1. Let {Z(t), t ≧ 0} be an age-dependent branching process with offspring generating function and life-time distribution function G(t). Denote by N(t) the progeny of the process, that is the total number of objects which have been born in [0, t], counting the ancestor. (See Section 2 for definitions.) Then in the Galton-Watson process (i.e., when G(t) = 0 for t ≦ 1, G(t) = 1 for t > 1) we have the simple relation Nn = Z 0 + Z 1 + ··· + Zn , so that the asymptotic behaviour of Nn as n → ∞ follows from a knowledge of the asymptotic behaviour of Zn . In particular, if 1 < m = h'(1) < ∞ and Zn (ω)/E(Zn ) → Z(ω) > 0 then also Nn (ω)/E(Nn ) → Z(ω) > 0; since E(Zn )/E(Nn ) → 1 – m –1 this means that

1971 ◽  
Vol 8 (2) ◽  
pp. 407-412 ◽  
Author(s):  
R. A. Doney

1. Let {Z(t), t ≧ 0} be an age-dependent branching process with offspring generating function and life-time distribution function G(t). Denote by N(t) the progeny of the process, that is the total number of objects which have been born in [0, t], counting the ancestor. (See Section 2 for definitions.) Then in the Galton-Watson process (i.e., when G(t) = 0 for t ≦ 1, G(t) = 1 for t > 1) we have the simple relation Nn = Z0 + Z1 + ··· + Zn, so that the asymptotic behaviour of Nn as n → ∞ follows from a knowledge of the asymptotic behaviour of Zn. In particular, if 1 < m = h'(1) < ∞ and Zn(ω)/E(Zn) → Z(ω) > 0 then also Nn(ω)/E(Nn) → Z(ω) > 0; since E(Zn)/E(Nn) → 1 – m–1 this means that


1971 ◽  
Vol 8 (3) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 < m = h'(1 –) < ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) < 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1971 ◽  
Vol 8 (03) ◽  
pp. 589-598 ◽  
Author(s):  
Krishna B. Athreya

The functional equation ϕ(mu) = h(ϕ(u)) where is a probability generating function with 1 &lt; m = h'(1 –) &lt; ∞ and where F(t) is a non-decreasing right continuous function with F(0 –) = 0, F(0 +) &lt; 1 and F(+ ∞) = 1 arises in a Galton-Watson process in a natural way. We prove here that for any if and only if This unifies several results in the literature on the supercritical Galton-Watson process. We generalize this to an age dependent branching process case as well.


1968 ◽  
Vol 5 (01) ◽  
pp. 216-219 ◽  
Author(s):  
H. Rubin ◽  
D. Vere-Jones

Let F(z) = σ fjzj be the generating function for the offspring distribution {fj } from a single ancestor in the usual Galton-Watson process. It is well-known (see Harris [1]) that if Π(z) is the generating function of the distribution of ancestors in the 0th generation, the distribution of offspring at the nth generation has generating function where F n (z), the nth functional iterate of F(z), gives the distribution of offspring at the nth generation from a single ancestor.


1968 ◽  
Vol 5 (1) ◽  
pp. 216-219 ◽  
Author(s):  
H. Rubin ◽  
D. Vere-Jones

Let F(z) = σ fjzj be the generating function for the offspring distribution {fj} from a single ancestor in the usual Galton-Watson process. It is well-known (see Harris [1]) that if Π(z) is the generating function of the distribution of ancestors in the 0th generation, the distribution of offspring at the nth generation has generating function where Fn(z), the nth functional iterate of F(z), gives the distribution of offspring at the nth generation from a single ancestor.


1978 ◽  
Vol 15 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v.It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1]k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant.This result is then used to give a new proof of the exponential limit law.


1978 ◽  
Vol 15 (02) ◽  
pp. 235-242
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z 1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v. It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1] k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant. This result is then used to give a new proof of the exponential limit law.


1979 ◽  
Vol 16 (03) ◽  
pp. 513-525 ◽  
Author(s):  
Andrew D. Barbour ◽  
H.-J. Schuh

It is well known that, in a Bienaymé-Galton–Watson process (Zn ) with 1 &lt; m = EZ 1 &lt; ∞ and EZ 1 log Z 1 &lt;∞, the sequence of random variables Znm –n converges a.s. to a non–degenerate limit. When m =∞, an analogous result holds: for any 0&lt; α &lt; 1, it is possible to find functions U such that α n U (Zn ) converges a.s. to a non-degenerate limit. In this paper, some sufficient conditions, expressed in terms of the probability generating function of Z 1 and of its distribution function, are given under which a particular pair (α, U) is appropriate for (Zn ). The most stringent set of conditions reduces, when U (x) x, to the requirements EZ 1 = 1/α, EZ 1 log Z 1 &lt;∞.


1979 ◽  
Vol 16 (3) ◽  
pp. 513-525 ◽  
Author(s):  
Andrew D. Barbour ◽  
H.-J. Schuh

It is well known that, in a Bienaymé-Galton–Watson process (Zn) with 1 < m = EZ1 < ∞ and EZ1 log Z1 <∞, the sequence of random variables Znm –n converges a.s. to a non–degenerate limit. When m =∞, an analogous result holds: for any 0< α < 1, it is possible to find functions U such that α n U (Zn) converges a.s. to a non-degenerate limit. In this paper, some sufficient conditions, expressed in terms of the probability generating function of Z1 and of its distribution function, are given under which a particular pair (α, U) is appropriate for (Zn). The most stringent set of conditions reduces, when U (x) x, to the requirements EZ1 = 1/α, EZ1 log Z1 <∞.


1978 ◽  
Vol 10 (1) ◽  
pp. 62-84 ◽  
Author(s):  
J. D. Biggins

In a supercritical branching random walk on Rp, a Galton–Watson process with the additional feature that people have positions, let be the set of positions of the nth-generation people, scaled by the factor n–1. It is shown that when the process survives looks like a convex set for large n. An analogous result is established for an age-dependent branching process in which people also have positions. In certain cases an explicit formula for the asymptotic shape is given.


Sign in / Sign up

Export Citation Format

Share Document