Limit theorems for random mating in infinite populations

1966 ◽  
Vol 3 (01) ◽  
pp. 94-114 ◽  
Author(s):  
B. E. Ellison

This paper is concerned with the distribution of “types” of individuals in an infinite population after indefinitely many nonoverlapping generations of random mating. The absence of selection and mutation is assumed. The probabilistic law which governs the production of an offspring may be asymmetrical with respect to the “sexes” of the two parents, but the law is assumed to apply independently of the “sex” of the offspring. The question of the existence of a limit distribution of types, the rate at which a limit distribution is approached, and properties of limit distributions are treated.

1966 ◽  
Vol 3 (1) ◽  
pp. 94-114 ◽  
Author(s):  
B. E. Ellison

This paper is concerned with the distribution of “types” of individuals in an infinite population after indefinitely many nonoverlapping generations of random mating. The absence of selection and mutation is assumed. The probabilistic law which governs the production of an offspring may be asymmetrical with respect to the “sexes” of the two parents, but the law is assumed to apply independently of the “sex” of the offspring. The question of the existence of a limit distribution of types, the rate at which a limit distribution is approached, and properties of limit distributions are treated.


1980 ◽  
Vol 12 (02) ◽  
pp. 319-349 ◽  
Author(s):  
Bengt Von Bahr ◽  
Anders Martin-Löf

The Reed–Frost model for the spread of an infection is considered and limit theorems for the total size, T, of the epidemic are proved in the limit when n, the initial number of healthy persons, is large and the probability of an encounter between a healthy and an infected person per time unit, p, is λ/n. It is shown that there is a critical threshold λ = 1 in the following sense, when the initial number of infected persons, m, is finite: If λ ≦ 1, T remains finite and has a limit distribution which can be described. If λ > 1 this is still true with a probability σ m < 1, and with probability 1 – σ m T is close to n(1 – σ) and has an approximately Gaussian distribution around this value. When m → ∞ also, only the Gaussian part of the limit distribution is obtained. A randomized version of the Reed–Frost model is also considered, and this allows the same result to be proved for the Kermack–McKendrick model. It is also shown that the limit theorem can be used to study the number of connected components in a random graph, which can be considered as a crude description of a polymerization process. In this case polymerization takes place when λ > 1 and not when λ ≦ 1.


1968 ◽  
Vol 5 (3) ◽  
pp. 487-566 ◽  
Author(s):  
Samuel Karlin

Wright (1921) computed various correlations of relatives by a rather cumbersome procedure called the “method of path coefficients”. Wright's method is basically a disguised form of the use of Bayes' rule and the law of total probabilities. Malecot (1948) reorganized Wright's calculations by introducing the fundamental concept of identity by descent and exploiting its properties. The method of identity by descent has been perfected and developed by Malécot and his students, especially Gillois, Jauquard and Bouffette. Kempthorne (1957) has applied the concept of identity by descent to the study of quantitative inheritance. Kimura (1963) elegantly employed the ideas of identity by descent in determining rates of approach to homozygosity in certain mating situations with finite population size. Later in this chapter we will extend and refine the results of Kimura (1963) to give a more complete study of rates of approach to homozygosity. Ellison (1966) established several important limit theorems corresponding to polyploid, multi-locus random mating infinite populations by judicious enlargement of the concepts of identity by descent. Kesten (unpublished)) has recently refined the technique of Ellison.


1991 ◽  
Vol 28 (01) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


1991 ◽  
Vol 28 (1) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


1973 ◽  
Vol 21 (3) ◽  
pp. 247-262 ◽  
Author(s):  
B. S. Weir ◽  
C. Clark Cockerham

SUMMARYAn infinite population practising a constant amount of selfing and random mating is studied. The effects of the mating system on two linked loci with an arbitrary number of neutral alleles are determined. Expressions are obtained for the two-locus descent measure, and hence genotypic frequencies and disequilibria functions, in any generation. The nature of the equilibrium population is deduced. The special cases of pure selfing or pure random mating and completely linked or completely unlinked loci are considered separately.


1986 ◽  
Vol 23 (02) ◽  
pp. 265-282 ◽  
Author(s):  
Anders Martin-Löf

Iterative sampling procedures of a general type in a finite population are considered. They generalize the Reed-Frost process in that binomial sampling is replaced by an arbitrary symmetric sampling defined by a factorial series distribution. Threshold limit theorems are proved saying that the total number of sampled objects is either small with a certain limit distribution, or a finite fraction of the population with a Gaussian limit distribution as the size of the population gets large. These results extend earlier ones for the Reed-Frost process [1], and are proved in a more direct way than before.


2012 ◽  
Vol 44 (1) ◽  
pp. 166-195 ◽  
Author(s):  
Aristides V. Doumas ◽  
Vassilis G. Papanicolaou

We develop techniques for computing the asymptotics of the first and second moments of the number TN of coupons that a collector has to buy in order to find all N existing different coupons as N → ∞. The probabilities (occurring frequencies) of the coupons can be quite arbitrary. From these asymptotics we obtain the leading behavior of the variance V[TN] of TN (see Theorems 3.1 and 4.4). Then, we combine our results with the general limit theorems of Neal in order to derive the limit distribution of TN (appropriately normalized), which, for a large class of probabilities, turns out to be the standard Gumbel distribution. We also give various illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document