Implementation of fictitious absorbing layers with deceleration effects for one-dimensional Schrödinger equations

2020 ◽  
Vol 86 (5) ◽  
Author(s):  
Hitoshi Kanai ◽  
Tomo Tatsuno

Absorbing boundary conditions or layers are used in simulations to reduce or eliminate wave reflections from the boundary; one of the most widely used absorbing layers is Berenger's perfectly matched layer (PML). In this paper, PML is extended to a compound absorbing layer which has multiple effects of damping and deceleration, and is applied to linear and nonlinear Schrödinger equations. The deceleration extends the time to damp out the modes with higher phase velocities, leading to remarkably reduced total reflection for dispersive waves. By invoking the two effects independently, the flexibility and performance are enhanced. Since this method is based on the WKB formalism, it requires an absorbing layer of a moderate size.

2011 ◽  
Vol 10 (5) ◽  
pp. 1280-1304 ◽  
Author(s):  
Pauline Klein ◽  
Xavier Antoine ◽  
Christophe Besse ◽  
Matthias Ehrhardt

AbstractWe propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.


Sign in / Sign up

Export Citation Format

Share Document