scholarly journals Families of solvable Frobenius subgroups in finite groups

2002 ◽  
Vol 165 ◽  
pp. 117-121
Author(s):  
Paul Lescot

We introduce the notion of abelian system on a finite group G, as a particular case of the recently defined notion of kernel system (see this Journal, September 2001). Using a famous result of Suzuki on CN-groups, we determine all finite groups with abelian systems. Except for some degenerate cases, they turn out to be special linear group of rank 2 over fields of characteristic 2 or Suzuki groups. Our ideas were heavily influenced by [1] and [8].

2018 ◽  
Vol 17 (08) ◽  
pp. 1850149
Author(s):  
Seyyed Majid Jafarian Amiri ◽  
Hojjat Rostami

In this paper, we find the number of the element centralizers of a finite group [Formula: see text] such that the central factor of [Formula: see text] is the projective special linear group of degree 2 or the Suzuki group. Our results generalize some main results of [Ashrafi and Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (2005) 217–227; Schmidt, Zentralisatorverbände endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970) 97–131; Zarrin, On element centralizers in finite groups, Arch. Math. 93 (2009) 497–503]. Also, we give an application of these results.


1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


2021 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Haval M. Mohammed Salih ◽  
Sanaa M. S. Omer

<p style="text-align: left;" dir="ltr"> Let <em>G</em> be a finite group and let <em>N</em> be a fixed normal subgroup of <em>G</em>.  In this paper, a new kind of graph on <em>G</em>, namely the intersection graph is defined and studied. We use <img src="/public/site/images/ikhsan/equation.png" alt="" width="6" height="4" /> to denote this graph, with its vertices are all normal subgroups of <em>G</em> and two distinct vertices are adjacent if their intersection in <em>N</em>. We show some properties of this graph. For instance, the intersection graph is a simple connected with diameter at most two. Furthermore we give the graph structure of <img src="/public/site/images/ikhsan/equation_(1).png" alt="" width="6" height="4" /> for some finite groups such as the symmetric, dihedral, special linear group, quaternion and cyclic groups. </p>


2014 ◽  
Vol 95 (109) ◽  
pp. 255-266
Author(s):  
Bahman Khosravi ◽  
Behnam Khosravi ◽  
Oskouei Dalili

Let G be a finite group. The prime graph of G is denoted by ?(G). We prove that the simple group PSLn(3), where n ? 9, is quasirecognizable by prime graph; i.e., if G is a finite group such that ?(G) = ?(PSLn(3)), then G has a unique nonabelian composition factor isomorphic to PSLn(3). Darafsheh proved in 2010 that if p > 3 is a prime number, then the projective special linear group PSLp(3) is at most 2-recognizable by spectrum. As a consequence of our result we prove that if n ? 9, then PSLn(3) is at most 2-recognizable by spectrum.


1974 ◽  
Vol 53 ◽  
pp. 47-57 ◽  
Author(s):  
Alan R. Camina

In 1953 N. Itô defined the conjugate rank of a finite group as the number of distinct sizes, not equal to 1, of the conjugacy classes of the group [7].


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


Sign in / Sign up

Export Citation Format

Share Document