scholarly journals Structure of intersection graphs

2021 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Haval M. Mohammed Salih ◽  
Sanaa M. S. Omer

<p style="text-align: left;" dir="ltr"> Let <em>G</em> be a finite group and let <em>N</em> be a fixed normal subgroup of <em>G</em>.  In this paper, a new kind of graph on <em>G</em>, namely the intersection graph is defined and studied. We use <img src="/public/site/images/ikhsan/equation.png" alt="" width="6" height="4" /> to denote this graph, with its vertices are all normal subgroups of <em>G</em> and two distinct vertices are adjacent if their intersection in <em>N</em>. We show some properties of this graph. For instance, the intersection graph is a simple connected with diameter at most two. Furthermore we give the graph structure of <img src="/public/site/images/ikhsan/equation_(1).png" alt="" width="6" height="4" /> for some finite groups such as the symmetric, dihedral, special linear group, quaternion and cyclic groups. </p>

1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


1953 ◽  
Vol 5 ◽  
pp. 477-497 ◽  
Author(s):  
D. G. Higman

If there is given a subgroup 5 of a (finite) group G, we may ask what information is to be obtained about the structure of G from a knowledge of the location of S in G. Thus, for example, famed theorems of Frobenius and Burnside give criteria for the existence of a normal subgroup N of G such that G = NS and 1 = N ⋂ S, and hence in particular for the non-simplicity of G. To aid in locating S in G, and to facilitate exploitation of the transfer, we single out a descending chain of normal subgroups of S. Namely, we introduce the focal series of S in G by means of the recursive formulae


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


2019 ◽  
Vol 84 (1) ◽  
pp. 290-300
Author(s):  
JOHN S. WILSON

AbstractIt is proved that there is a formula$\pi \left( {h,x} \right)$in the first-order language of group theory such that each component and each non-abelian minimal normal subgroup of a finite groupGis definable by$\pi \left( {h,x} \right)$for a suitable elementhofG; in other words, each such subgroup has the form$\left\{ {x|x\pi \left( {h,x} \right)} \right\}$for someh. A number of consequences for infinite models of the theory of finite groups are described.


2014 ◽  
Vol 57 (3) ◽  
pp. 648-657 ◽  
Author(s):  
Juping Tang ◽  
Long Miao

AbstractLet G be a finite group and let ℱ be a class of groups. Then Zℱϕ(G) is the ℱϕ-hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are ℱ-central in G. A subgroup H is called ℳ-supplemented in a finite group G if there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H. The main purpose of this paper is to prove the following: Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of F*(E) has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is 𝓜-supplemented in G, then E ≤ Zuϕ(G).


2016 ◽  
Vol 16 (08) ◽  
pp. 1750160
Author(s):  
Guo Zhong ◽  
Shi-Xun Lin

Let [Formula: see text] be a subgroup of a finite group [Formula: see text]. We say that [Formula: see text] is a [Formula: see text]-normal subgroup of [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is a [Formula: see text]-subgroup of [Formula: see text]. In the present paper, we use [Formula: see text]-normality of subgroups to characterize the structure of finite groups, and establish some necessary and sufficient conditions for a finite group to be [Formula: see text]-supersolvable, [Formula: see text]-nilpotent and solvable. Our results extend and improve some recent ones.


2010 ◽  
Vol 89 (1) ◽  
pp. 1-7
Author(s):  
INGRID CHEN

AbstractLet G be a finite group with normal subgroup N. A subgroup K of G is a partial complement of N in G if N and K intersect trivially. We study the partial complements of N in the following case: G is soluble, N is a product of minimal normal subgroups of G, N has a complement in G, and all such complements are G-conjugate.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Hadi Ahmadi ◽  
Bijan Taeri

For a nontrivial finite group [Formula: see text] different from a cyclic group of prime order, the intersection graph [Formula: see text] of [Formula: see text] is the simple undirected graph whose vertices are the nontrivial proper subgroups of [Formula: see text] and two vertices are joined by an edge if and only if they have a nontrivial intersection. In this paper we characterize all finite groups with planar intersection graphs. It turns out that few solvable groups have planar intersection graphs. Also we classify finite groups whose intersection graphs are bipartite, triangle free and forests.


1975 ◽  
Vol 19 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Everett C. Dade

Suppose that H/N is a section of a finite group G, i.e., that H is a subgroup of G and N is a normal subgroup of H. We are interested in the existence of normal subgroups M of G satisfying: Such an M can be called a normal complement to the section H/N in G.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


Sign in / Sign up

Export Citation Format

Share Document