intersection graphs
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 56)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 48 (2) ◽  
Author(s):  
Liliana Alcón ◽  
Flavia Bonomo-Braberman ◽  
María Pía Mazzoleni ◽  
Fabiana Oliveira
Keyword(s):  

2021 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Haval M. Mohammed Salih ◽  
Sanaa M. S. Omer

<p style="text-align: left;" dir="ltr"> Let <em>G</em> be a finite group and let <em>N</em> be a fixed normal subgroup of <em>G</em>.  In this paper, a new kind of graph on <em>G</em>, namely the intersection graph is defined and studied. We use <img src="/public/site/images/ikhsan/equation.png" alt="" width="6" height="4" /> to denote this graph, with its vertices are all normal subgroups of <em>G</em> and two distinct vertices are adjacent if their intersection in <em>N</em>. We show some properties of this graph. For instance, the intersection graph is a simple connected with diameter at most two. Furthermore we give the graph structure of <img src="/public/site/images/ikhsan/equation_(1).png" alt="" width="6" height="4" /> for some finite groups such as the symmetric, dihedral, special linear group, quaternion and cyclic groups. </p>


Author(s):  
Remco der Hofstad ◽  
Júlia Komjáthy ◽  
Viktória Vadon

2021 ◽  
Vol 53 (4) ◽  
pp. 1061-1089
Author(s):  
Remco van der Hofstad ◽  
Júlia Komjáthy ◽  
Viktória Vadon

AbstractRandom intersection graphs model networks with communities, assuming an underlying bipartite structure of communities and individuals, where these communities may overlap. We generalize the model, allowing for arbitrary community structures within the communities. In our new model, communities may overlap, and they have their own internal structure described by arbitrary finite community graphs. Our model turns out to be tractable. We analyze the overlapping structure of the communities, show local weak convergence (including convergence of subgraph counts), and derive the asymptotic degree distribution and the local clustering coefficient.


Author(s):  
Matthew Johnson ◽  
Daniël Paulusma ◽  
Erik Jan van Leeuwen

Let [Formula: see text] be an integer. From a set of [Formula: see text]-dimensional vectors, we obtain a [Formula: see text]-dot by letting each vector [Formula: see text] correspond to a vertex [Formula: see text] and by adding an edge between two vertices [Formula: see text] and [Formula: see text] if and only if their dot product [Formula: see text], for some fixed, positive threshold [Formula: see text]. Dot product graphs can be used to model social networks. Recognizing a [Formula: see text]-dot product graph is known to be NP -hard for all fixed [Formula: see text]. To understand the position of [Formula: see text]-dot product graphs in the landscape of graph classes, we consider the case [Formula: see text], and investigate how [Formula: see text]-dot product graphs relate to a number of other known graph classes including a number of well-known classes of intersection graphs.


Algorithmica ◽  
2021 ◽  
Author(s):  
Jan Kratochvíl ◽  
Tomáš Masařík ◽  
Jana Novotná

AbstractInterval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs—a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a richer class of graphs. In particular, mixed unit interval graphs may contain a claw as an induced subgraph, as opposed to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyacı et al. (Inf Process Lett 121:29–33, 2017. 10.1016/j.ipl.2017.01.007). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs.


Algorithmica ◽  
2021 ◽  
Author(s):  
Steven Chaplick ◽  
Martin Töpfer ◽  
Jan Voborník ◽  
Peter Zeman
Keyword(s):  

2021 ◽  
Author(s):  
Tanilson D. Santos ◽  
Jayme Szwarcfiter ◽  
Uéverton S. Souza ◽  
Claudson F. Bornstein

An EPG graph G is an edge-intersection graph of paths on a grid. In this thesis, we analyze structural characterizations and complexity aspects regarding EPG graphs. Our main focus is on the class of B1-EPG graphs whose intersection model satisfies well-known the Helly property, called Helly-B1-EPG. We show that the problem of recognizing Helly-B1-EPG graphs is NP-complete. Besides, other intersection graph classes such as VPG, EPT, and VPT were also studied. We completely solve the problem of determining the Helly and strong Helly numbers of Bk-EPG graphs and Bk-VPG graphs for each non-negative integer k. Finally, we show that every Chordal B1-EPG graph is at the intersection of VPT and EPT.


2021 ◽  
Author(s):  
James Davies

We prove that there are intersection graphs of axis-aligned boxes in R3 and intersection graphs of straight lines in R3 that have arbitrarily large girth and chromatic number.


Sign in / Sign up

Export Citation Format

Share Document