scholarly journals Dualizing Complex of a Toric Face Ring

2009 ◽  
Vol 196 ◽  
pp. 87-116 ◽  
Author(s):  
Ryota Okazaki ◽  
Kohji Yanagawa

A toric face ring, which generalizes both Stanley-Reisner rings and affine semigroup rings, is studied by Bruns, Römer and their coauthors recently. In this paper, under the “normality” assumption, we describe a dualizing complex of a toric face ring R in a very concise way. Since R is not a graded ring in general, the proof is not straightforward. We also develop the square-free module theory over R, and show that the Cohen-Macaulay, Buchsbaum, and Gorenstein* properties of R are topological properties of its associated cell complex.

1990 ◽  
Vol 322 (2) ◽  
pp. 561 ◽  
Author(s):  
Uwe Schafer ◽  
Peter Schenzel

1992 ◽  
Vol 149 (2) ◽  
pp. 352-357 ◽  
Author(s):  
Mitsuyasu Hashimoto ◽  
Takayuki Hibi ◽  
Atsushi Noma

2019 ◽  
Vol 31 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Viviane Beuter ◽  
Daniel Gonçalves ◽  
Johan Öinert ◽  
Danilo Royer

Abstract Given a partial action π of an inverse semigroup S on a ring {\mathcal{A}} , one may construct its associated skew inverse semigroup ring {\mathcal{A}\rtimes_{\pi}S} . Our main result asserts that, when {\mathcal{A}} is commutative, the ring {\mathcal{A}\rtimes_{\pi}S} is simple if, and only if, {\mathcal{A}} is a maximal commutative subring of {\mathcal{A}\rtimes_{\pi}S} and {\mathcal{A}} is S-simple. We apply this result in the context of topological inverse semigroup actions to connect simplicity of the associated skew inverse semigroup ring with topological properties of the action. Furthermore, we use our result to present a new proof of the simplicity criterion for a Steinberg algebra {A_{R}(\mathcal{G})} associated with a Hausdorff and ample groupoid {\mathcal{G}} .


1988 ◽  
Vol 110 ◽  
pp. 113-128 ◽  
Author(s):  
Lê Tuân Hoa

Let N denote the set of non-negative integers. An affine semigroup is a finitely generated submonoid S of the additive monoid Nm for some positive integer m. Let k[S] denote the semigroup ring of S over a field k. Then one can identify k[S] with the subring of a polynomial ring k[t1, …, tm] generated by the monomials .


Author(s):  
E. Jespers

AbstractThe following questions are studied: When is a semigroup graded ring left Noetherian, respectively semiprime left Goldie? Necessary sufficient conditions are proved for cancellative semigroup-graded subrings of rings weakly or strongly graded by a polycyclic-by-finite (unique product) group. For semigroup rings R[S] we also give a solution to the problem in case S is an inverse semigroup.


2019 ◽  
Vol 540 ◽  
pp. 78-99 ◽  
Author(s):  
Jürgen Herzog ◽  
Fatemeh Mohammadi ◽  
Janet Page

2000 ◽  
Vol 130 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
J. C. Rosales ◽  
P. A. García-Sánchez

We give a structure theorem for simplicial affine semigroups. From this result we deduce characterizations of some properties of semigroup rings of simplicial affine semigroups. We also compute an upper bound for the cardinality of a minimal presentation of a simplicial affine semigroup.


1996 ◽  
Vol 119 (3) ◽  
pp. 425-445 ◽  
Author(s):  
D. Kirby ◽  
D. Rees

While this paper is principally a continuation of [5], with as its object the application of sections 6 and 7 of that paper to obtain results related to the Buchsbaum–Rim multiplicity, it also has connections with [8] which are the subject of the first of the four sections. These concern integral equivalence of finitely generated R-modules. where R is an arbitrary noetherian ring. We therefore introduce a finitely generated R-module M and relate to it a short exact sequence (s.e.s.),where F is a free module generated by m elements u1,…, um, and L is generated by elements yj, (j = 1, …, n), of F. We identify the elements u1, …, um with a set of indeterminates X1, …, Xm, and F with the R-module S1 of elements of degree 1 of the graded ring S = R[X1, …, Xm].


Sign in / Sign up

Export Citation Format

Share Document